Riemannian Filters for Multi-variate Mesh Signals
Teodor Cioaca, Bogdan Dumitrescu, Mihai Sorin Stupariu
2017
Abstract
Designing filters over irregular non-Euclidean domains requires algorithms that take into account the intrinsic curvature of these domains. We propose a new filtering method based on Riemannian weighted averages. The resulting filters are non-Euclidean adaptations of the mean shift and blurring mean shift algorithms. We also introduce a hybrid, efficient computing strategy by combining these iterative filtering methods with wavelet multi-resolution editing. The applications of our filters include multi-variate mesh data smoothing, denoising, attribute enhancement and curvature filtering.
References
- Aftab, K., Hartley, R., and Trumpf, J. (2015). Generalized Weiszfeld algorithms for Lq optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37:728-745.
- Caseiro, R., Henriques, J. a. F., Martins, P., and Batista, J. (2012). Semi-intrinsic mean shift on riemannian manifolds. In Proceedings of the 12th European Conference on Computer Vision - Volume Part I, ECCV'12, pages 342-355, Berlin, Heidelberg. Springer-Verlag.
- Cerveri, P., Manzotti, A., Marchente, M., Confalonieri, N., and Baroni, G. (2012). Mean-shifted surface curvature algorithm for automatic bone shape segmentation in orthopedic surgery planning: a sensitivity analysis. Computer Aided Surgery, 17(3):128-141. PMID: 22462564.
- Cetingul, H. E. and Vidal, R. (2009). Intrinsic mean shift for clustering on stiefel and grassmann manifolds. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 1896-1902.
- Cignoni, P., Corsini, M., and Ranzuglia, G. (2008). MeshLab: an Open-Source 3D Mesh Processing System. Ercim News, 2008.
- Cioaca, T., Dumitrescu, B., and Stupariu, M.-S. (2016). Graph-based wavelet representation of multi-variate terrain data. Computer Graphics Forum, 35(1):44-58.
- Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603-619.
- Fletcher, P. T., Venkatasubramanian, S., and Joshi, S. (2008). Robust statistics on riemannian manifolds via the geometric median. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8.
- Fletcher, P. T., Venkatasubramanian, S., and Joshi, S. (2009). The geometric median on riemannian manifolds with application to robust atlas estimation. NeuroImage, 45(1, Supplement 1):S143 - S152. Mathematics in Brain Imaging.
- Fukunaga, K. and Hostetler, L. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 21(1):32-40.
- Hildebrandt, K. and Polthier, K. (2004). Anisotropic Filtering of Non-Linear Surface Features. Computer Graphics Forum, 23:391-400.
- Jones, T. R., Durand, F., and Desbrun, M. (2003). Noniterative, feature-preserving mesh smoothing. ACM Trans. Graph., 22(3):943-949.
- Lee, K. and Wang, W. (2005). Feature-preserving mesh denoising via bilateral normal filtering. In 9th International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2005, Hong Kong, China, 7-10 December, 2005, page 6.
- Melvaer, E. L. and Reimers, M. (2012). Geodesic polar coordinates on polygonal meshes. Computer Graphics Forum, 31(8):2423-2435.
- Pennec, X. (2006). Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis., 25(1):127-154.
- Polthier, K. and Schmies, M. (1998). Straightest Geodesics on Polyhedral Surfaces, pages 135-150. Springer Berlin Heidelberg.
- Shamir, A., Shapira, L., and Cohen-Or, D. (2006). Mesh analysis using geodesic mean-shift. Vis. Comput., 22(2):99-108.
- Solomon, J., Crane, K., Butscher, A., and Wojtan, C. (2014). A general framework for bilateral and mean shift filtering. ArXiv e-print 1405.4734, 32.
- Subbarao, R. and Meer, P. (2009). Nonlinear mean shift over riemannian manifolds. International Journal of Computer Vision, 84(1):1-20.
- Taubin, G. (1995). Curve and surface smoothing without shrinkage. In Proceedings of the Fifth International Conference on Computer Vision, ICCV 7895, pages 852-852, Washington, DC, USA. IEEE Computer Society.
- Wang, W. and Carreira-Perpin, M. . (2010). Manifold blurring mean shift algorithms for manifold denoising. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1759-1766.
- Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., and Seidel, H.-P. (2005). Feature sensitive mesh segmentation with mean shift. In Proceedings of the International Conference on Shape Modeling and Applications 2005, SMI 7805, pages 238-245, Washington, DC, USA. IEEE Computer Society.
- Zhang, X., Li, G., Xiong, Y., and He, F. (2008). 3D Mesh Segmentation Using Mean-Shifted Curvature, pages 465-474. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Zheng, Y., Fu, H., Au, O. K.-C., and Tai, C.-L. (2011). Bilateral normal filtering for mesh denoising. IEEE Transactions on Visualization and Computer Graphics, 17(10):1521-1530.
Paper Citation
in Harvard Style
Cioaca T., Dumitrescu B. and Stupariu M. (2017). Riemannian Filters for Multi-variate Mesh Signals . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017) ISBN 978-989-758-224-0, pages 228-235. DOI: 10.5220/0006128602280235
in Bibtex Style
@conference{grapp17,
author={Teodor Cioaca and Bogdan Dumitrescu and Mihai Sorin Stupariu},
title={Riemannian Filters for Multi-variate Mesh Signals},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)},
year={2017},
pages={228-235},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006128602280235},
isbn={978-989-758-224-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)
TI - Riemannian Filters for Multi-variate Mesh Signals
SN - 978-989-758-224-0
AU - Cioaca T.
AU - Dumitrescu B.
AU - Stupariu M.
PY - 2017
SP - 228
EP - 235
DO - 10.5220/0006128602280235