Detection of Human Rights Violations in Images: Can Convolutional Neural Networks Help?
Grigorios Kalliatakis, Shoaib Ehsan, Maria Fasli, Ales Leonardis, Juergen Gall, Klaus D. McDonald-Maier
2017
Abstract
After setting the performance benchmarks for image, video, speech and audio processing, deep convolutional networks have been core to the greatest advances in image recognition tasks in recent times. This raises the question of whether there are any benefit in targeting these remarkable deep architectures with the unattempted task of recognising human rights violations through digital images. Under this perspective, we introduce a new, well-sampled human rights-centric dataset called Human Rights Understanding (HRUN). We conduct a rigorous evaluation on a common ground by combining this dataset with different state-of-the-art deep convolutional architectures in order to achieve recognition of human rights violations. Experimental results on the HRUN dataset have shown that the best performing CNN architectures can achieve up to 88.10% mean average precision. Additionally, our experiments demonstrate that increasing the size of the training samples is crucial for achieving an improvement on mean average precision principally when utilising very deep networks.
References
- Bell, S., Upchurch, P., Snavely, N., and Bala, K. (2015). Material recognition in the wild with the materials in context database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3479-3487.
- Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. In British Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1-5, 2014.
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE.
- Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. (2014). Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, pages 647-655.
- Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):303-338.
- Fei-Fei, L., Fergus, R., and Perona, P. (2007). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70.
- Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580-587.
- Griffin, G., Holub, A., and Perona, P. (2007). Caltech-256 object category dataset.
- He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for image recognition. CoRR, abs/1512.03385.
- He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, pages 1026-1034.
- Huang, Y., Huang, K., Yu, Y., and Tan, T. (2011). Salient coding for image classification. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1753-1760. IEEE.
- Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675-678. ACM.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105.
- LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436-444.
- LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551.
- Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European Conference on Computer Vision, pages 740-755. Springer.
- Liu, C., Sharan, L., Adelson, E. H., and Rosenholtz, R. (2010). Exploring features in a bayesian framework for material recognition. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 239-246. IEEE.
- Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807-814.
- Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1717-1724.
- Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229.
- Sharan, L., Rosenholtz, R., and Adelson, E. (2009). Material perception: What can you see in a brief glance? Journal of Vision, 9(8):784-784.
- Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 806-813.
- Simonyan, K. and Zisserman, A. (2014a). Two-stream convolutional networks for action recognition in videos. In Advances in Neural Information Processing Systems, pages 568-576.
- Simonyan, K. and Zisserman, A. (2014b). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.
- Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929-1958.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9.
- Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1701-1708.
- Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C. (2015). Efficient object localization using convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 648-656.
- Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11):1958-1970.
- Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. (2010). Locality-constrained linear coding for image classification. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3360-3367. IEEE.
- Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). Sun database: Large-scale scene recognition from abbey to zoo. In Computer vision and pattern recognition (CVPR), 2010 IEEE conference on, pages 3485-3492. IEEE.
- Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. (2015). LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365.
- Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In European Conference on Computer Vision, pages 818-833. Springer.
- Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning deep features for scene recognition using places database. In Advances in Neural Information Processing Systems, pages 487-495.
Paper Citation
in Harvard Style
Kalliatakis G., Ehsan S., Fasli M., Leonardis A., Gall J. and McDonald-Maier K. (2017). Detection of Human Rights Violations in Images: Can Convolutional Neural Networks Help? . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 289-296. DOI: 10.5220/0006133902890296
in Bibtex Style
@conference{visapp17,
author={Grigorios Kalliatakis and Shoaib Ehsan and Maria Fasli and Ales Leonardis and Juergen Gall and Klaus D. McDonald-Maier},
title={Detection of Human Rights Violations in Images: Can Convolutional Neural Networks Help?},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={289-296},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006133902890296},
isbn={978-989-758-226-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Detection of Human Rights Violations in Images: Can Convolutional Neural Networks Help?
SN - 978-989-758-226-4
AU - Kalliatakis G.
AU - Ehsan S.
AU - Fasli M.
AU - Leonardis A.
AU - Gall J.
AU - McDonald-Maier K.
PY - 2017
SP - 289
EP - 296
DO - 10.5220/0006133902890296