Parking Space Occupancy Verification - Improving Robustness using a Convolutional Neural Network
Troels H. P. Jensen, Helge T. Schmidt, Niels D. Bodin, Kamal Nasrollahi, Thomas B. Moeslund
2017
Abstract
With the number of privately owned cars increasing, the issue of locating an available parking space becomes apparant. This paper deals with the problem of verifying if a parking space is vacant, using a vision based system overlooking parking areas. In particular the paper proposes a binary classifier system, based on a Con- volutional Neural Network, that is capable of determining if a parking space is occupied or not. A benchmark database consisting of images captured from different parking areas, under different weather and illumina- tion conditions, has been used to train and test the system. The system shows promising performance on the database with an overall accuracy of 99.71 %
References
- Ahrnbom, M., Astrom, K., and Nilsson, M. (2016). Fast classification of empty and occupied parking spaces using integral channel features. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
- Baroffio, L., Bondi, L., Cesana, M., Redondi, A. E., and Tagliasacchi, M. (2015). A visual sensor network for parking lot occupancy detection in smart cities. In Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on, pages 745-750.
- Bhaskar, H., Werghi, N., and Al-Mansoori, S. (2011). Rectangular empty parking space detection using sift based classification. In VISAPP, pages 214-220.
- De Almeida, P. R. L., Oliveira, L. S., Britto, A. S., Silva, E. J., and Koerich, A. L. (2015). PKLot-A robust dataset for parking lot classification. Expert Systems with Applications, 42(11):4937-4949.
- Funck, S., Mohler, N., and Oertel, W. (2004). Determining Car-Park Occupancy from Single Images. Intelligent Vehicles Symposium, 2004 IEEE, pages 325-328.
- Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In Gordon, G. J. and Dunson, D. B., editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), volume 15, pages 315-323. Journal of Machine Learning Research - Workshop and Conference Proceedings.
- Huang, C. C. and Vu, H. T. (2015). A multi-layer discriminative framework for parking space detection. In 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), pages 1-6.
- Huang, J. and You, S. (2016). Vehicle detection in urban point clouds with orthogonal-view convolutional neural network. In 2016 IEEE International Conference on Image Processing (ICIP), pages 2593-2597.
- Klosowski, M., Wojcikowski, M., and Czyzewski, A. (2015). Vision-based parking lot occupancy evaluation system using 2D separable discrete wavelet transform. Bull. Polish Acad. Sci. Tech. Sci., 63(3):569- 573.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst., pages 1-9.
- Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(1):436-444.
- Masmoudi, I., Wali, A., Jamoussi, A., and Alimi, A. M. (2014). Vision based system for vacant parking lot detection: Vpld. In Proceedings of the 9th International Conference on Computer Vision Theory and Applications (VISIGRAPP 2014), pages 526-533.
- Masmoudi, I., Wali, A., Jamoussi, A., and Alimi, M. A. (2016). Trajectory analysis for parking lot vacancy detection system. IET Intelligent Transport Systems, 10(7):461-468.
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252.
- Shoup, D. C. (2006). Cruising for parking. Transport Policy, 13(6):479-486.
- Simard, P., Steinkraus, D., and Platt, J. C. (2003). Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. Proc. 7th Int. Conf. Doc. Anal. Recognit., pages 958-963.
- Sukhinskiy, I. V., Nepovinnykh, E. A., and Radchenko, G. I. (2016). Developing a parking monitoring system based on the analysis of images from an outdoor surveillance camera. In 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 1603-1607.
- Theano Development Team (2016). Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688.
- True, N. (2007). Vacant parking space detection in static images. University of California, San Diego.
- Tschentscher, M., Koch, C., Konig, M., Salmen, J., and Schlipsing, M. (2015). Scalable real-time parking lot classification: An evaluation of image features and supervised learning algorithms. In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1-8.
- Valipour, S., Siam, M., Stroulia, E., and Jagersand, M. (2016). Parking stall vacancy indicator system based on deep convolutional neural networks.
- Wilson, D. and Martinez, T. R. (2003). The general inefficiency of batch training for gradient descent learning. Neural Networks, 16(10):1429 - 1451.
- Zheng, N. and Geroliminis, N. (2016). Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing. Transportation Research Part B: Methodological, 83:36 - 58.
Paper Citation
in Harvard Style
Jensen T., Schmidt H., Bodin N., Nasrollahi K. and Moeslund T. (2017). Parking Space Occupancy Verification - Improving Robustness using a Convolutional Neural Network . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 311-318. DOI: 10.5220/0006135103110318
in Bibtex Style
@conference{visapp17,
author={Troels H. P. Jensen and Helge T. Schmidt and Niels D. Bodin and Kamal Nasrollahi and Thomas B. Moeslund},
title={Parking Space Occupancy Verification - Improving Robustness using a Convolutional Neural Network},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={311-318},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006135103110318},
isbn={978-989-758-226-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Parking Space Occupancy Verification - Improving Robustness using a Convolutional Neural Network
SN - 978-989-758-226-4
AU - Jensen T.
AU - Schmidt H.
AU - Bodin N.
AU - Nasrollahi K.
AU - Moeslund T.
PY - 2017
SP - 311
EP - 318
DO - 10.5220/0006135103110318