CSG Ray Tracing Revisited: Interactive Rendering of Massive Models Made of Non-planar Higher Order Primitives

Seyedmorteza Mostajabodaveh, Andreas Dietrich, Thomas Gierlinger, Frank Michel, André Stork

2017

Abstract

In many scientific and engineering areas, CAD models are constructed by combining simple primitives using Boolean set operations. Rendering such a dataset usually requires a preprocess, where the surface of the CAD model is approximated by an often highly complex triangle mesh. Real-time ray tracing provides an alternative to triangle rasterization as it allows for the direct visualization of (higher-order) solid and planar primitives without having to triangulate them. Additionally, Boolean compositing operations can be performed implicitly per ray, primitives have low storage requirements, and curved surfaces appear pixel-accurate. In this paper we demonstrate these properties using massive real-world CAD models.

References

  1. Abramowitz, M. (1974). Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables,. Dover Publications, Incorporated.
  2. AVEVA (2001). PDMS DESIGN Reference Manual Part 3: Elements and Attributes. http://www.scribd.com/doc/23187647/Pdms-Design.
  3. Bittner, J., Wimmer, M., Piringer, H., and Purgathofer, W. (2004). Coherent hierarchical culling: Hardware occlusion queries made useful. Computer Graphics Forum, 23(3):615-624.
  4. Engel, W. (2014). GPU Pro 5: Advanced Rendering Techniques. CRC Press.
  5. Everitt, C. (2001). Interactive order-independent transparency.
  6. Gjonaj, E., Perotoni, M., and Weiland, T. (2006). Large Scale Simulation of an Integrated Circuit Package. In Proceedings of the 15th Conference on Electrical Performance of Electronic Packaging (EPEP), pages 291-294.
  7. Glassner, A. (1989). An Introduction to Ray Tracing. Morgan Kaufmann.
  8. Goldfeather, J., Hultquist, J. P., and Fuchs, H. (1986). Fast Constructive-Solid Geometry Display in the PixelPowers Graphics System. In Computer Graphics (Proceedings of ACM SIGGRAPH), pages 107-116.
  9. Guha, S., Krishnan, S., Munagala, K., and Venkatasubramanian, S. (2003). Application of the two-sided depth test to csg rendering. In Proceedings of the 2003 Symposium on Interactive 3D Graphics, I3D 7803, pages 177-180, New York, NY, USA. ACM.
  10. Hable, J. and Rossignac, J. (2005). Blister: Gpu-based rendering of boolean combinations of free-form triangulated shapes. ACM Trans. Graph., 24(3):1024-1031.
  11. Haeberli, P. and Akeley, K. (1990). The accumulation buffer: Hardware support for high-quality rendering. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7890, pages 309-318, New York, NY, USA. ACM.
  12. Hijazi, Y., Knoll, A., Schott, M., Kensler, A. E., Hansen, C. D., and Hagen, H. (2010). CSG Operations of Arbitrary Primitives with Interval Arithmetic and RealTime Ray Casting. In Scientific Visualization: Advanced Concepts, pages 78-89.
  13. Kirsch, F. and D öllner, J. (2005). Opencsg: A library for image-based csg rendering. In Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC 7805, pages 49-49, Berkeley, CA, USA. USENIX Association.
  14. MacDonald, D. J. and Booth, K. S. (1990). Heuristics for ray tracing using space subdivision. Vis. Comput., 6(3):153-166.
  15. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. (2010). OptiX: A General Purpose Ray Tracing Engine. In ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), pages 66:1-66:13.
  16. Romeiro, F., Velho, L., and de Figueiredo, L. H. (2006). Hardware-assisted Rendering of CSG Models. In Proceedings of XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pages 139-146.
  17. Roth, S. D. (1982). Ray casting for modeling solids. Computer Graphics and Image Processing, 18(2):109- 144.
  18. Stewart, N., Leach, G., and John, S. (2002). Linear-time csg rendering of intersected convex objects. In In 10th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision - WSCG 2002 (2002, pages 437-444.
  19. Wald, I., Woop, S., Benthin, C., Johnson, G. S., and Ernst, M. (2014). Embree: A Kernel Framework for Efficient CPU Ray Tracing. In ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), pages 143:1- 143:8.
  20. Wiegand, T. E. (1996). Interactive rendering of csg models. Computer Graphics Forum, 15(4):249-261.
Download


Paper Citation


in Harvard Style

Mostajabodaveh S., Dietrich A., Gierlinger T., Michel F. and Stork A. (2017). CSG Ray Tracing Revisited: Interactive Rendering of Massive Models Made of Non-planar Higher Order Primitives . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017) ISBN 978-989-758-224-0, pages 258-265. DOI: 10.5220/0006136402580265


in Bibtex Style

@conference{grapp17,
author={Seyedmorteza Mostajabodaveh and Andreas Dietrich and Thomas Gierlinger and Frank Michel and André Stork},
title={CSG Ray Tracing Revisited: Interactive Rendering of Massive Models Made of Non-planar Higher Order Primitives},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)},
year={2017},
pages={258-265},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006136402580265},
isbn={978-989-758-224-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)
TI - CSG Ray Tracing Revisited: Interactive Rendering of Massive Models Made of Non-planar Higher Order Primitives
SN - 978-989-758-224-0
AU - Mostajabodaveh S.
AU - Dietrich A.
AU - Gierlinger T.
AU - Michel F.
AU - Stork A.
PY - 2017
SP - 258
EP - 265
DO - 10.5220/0006136402580265