Investigating Graph Similarity Perception: A Preliminary Study and Methodological Challenges

Tatiana von Landesberger, Margit Pohl, Günter Wallner, Martin Distler, Kathrin Ballweg

2017

Abstract

Graphs have become an indispensable model for representing data in a multitude of domains, including biology, business, financing, and social network analysis. In many of these domains humans are repeatedly confronted with the need to visually compare node-link representations of graphs in order to identify their commonalities or differences. Yet, despite its importance little is known about how much visual differences affect users' perception of graph similarity. As a result, more systematic investigations addressing this issue are necessary. However, from a methodological point of view there are still many open questions regarding the investigation of graph comparisons. To this end, this paper provides an overview of methodological challenges, presents results of an explorative study conducted to identify individual factors influencing the recognition of graph differences, and discusses lessons learned from this study. Our considerations and results can serve as foundation for further studies in this area and can contribute to the comparability of these investigations.

References

  1. Archambault, D. (2009). Structural differences between two graphs through hierarchies. In GI, pages 87-94.
  2. Archambault, D., Purchase, H. C., and Pinaud, B. (2011). Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE TVCG, 17(4):539-552.
  3. Bach, B., Pietriga, E., and Fekete, J.-D. (2014). Graphdiaries: animated transitions and temporal navigation for dynamic networks. IEEE TVCG, 20(5):740-754.
  4. Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014). The state of the art in visualizing dynamic graphs. EuroVis STAR.
  5. Bortz, J. and Döring, N. (2007). Forschungsmethoden und Evaluation für Human-und Sozialwissenschaftler. Springer.
  6. Bremm, S., Von Landesberger, T., Heß, M., Schreck, T., Weil, P., and Hamacher, K. (2011). Interactive visual comparison of multiple trees. In IEEE VAST, pages 31-40. IEEE.
  7. Collins, C. M. and Carpendale, S. (2007). VisLink: Revealing relationships amongst visualizations. IEEE TVCG, 13(6):1192-1199.
  8. Diehl, S. and Görg, C. (2002). Graphs, they are changing. In Graph drawing, pages 23-31. Springer.
  9. Dwyer, T., Lee, B., Fisher, D., Quinn, K. I., Isenberg, P., Robertson, G., and North, C. (2009). A comparison of user-generated and automatic graph layouts. IEEE TVCG, 15(6):961-968.
  10. Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey of graph edit distance. Pattern Analysis and applications, 13(1):113-129.
  11. Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2005). On the readability of graphs using node-link and matrixbased representations: A controlled experiment and statistical analysis. Inf Vis, 4(2):114-135.
  12. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C. D., and Roberts, J. C. (2011). Visual comparison for information visualization. Inf Vis, 10(4):289-309.
  13. Graham, M. and Kennedy, J. (2010). A survey of multiple tree visualisation. Inf Vis, 9(4):235-252.
  14. Hadlak, S., Schumann, H., and Schulz, H.-J. (2015). A survey of multi-faceted graph visualization. EuroVis STAR.
  15. Hardin, J. W. and Hilbe, J. M. (2012). Generalized Estimating Equations. Chapman and Hall/CRC, 2 edition.
  16. Holten, D. and Van Wijk, J. J. (2008). Visual comparison of hierarchically organized data. CGF, 27(3):759-766.
  17. Holten, D. and van Wijk, J. J. (2009). A user study on visualizing directed edges in graphs. In CHI 7809, CHI 7809, pages 2299-2308.
  18. Huang, W., Hong, S.-H., and Eades, P. (2006a). How people read sociograms: a questionnaire study. In IEEE PacificVis , pages 199-206.
  19. Huang, W., Hong, S.-H., and Eades, P. (2006b). Predicting graph reading performance: a cognitive approach. In IEEE PacificVis , pages 207-216.
  20. Kieffer, S., Dwyer, T., Marriott, K., and Wybrow, M. (2016). Hola: Human-like orthogonal network layout. IEEE TVCG, 22(1):349-358.
  21. Kobourov, S. G., Pupyrev, S., and Saket, B. (2014). Are crossings important for drawing large graphs? In Graph Drawing, pages 234-245. Springer.
  22. Körner, C. (2005). Concepts and misconceptions in comprehension of hierarchical graphs. Learning and Instruction, 15(4):281-296.
  23. Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., and Henry, N. (2006). Task taxonomy for graph visualization. In BELIV, pages 1-5, New York, NY, USA. ACM.
  24. McGee, F. and Dingliana, J. (2012). An empirical study on the impact of edge bundling on user comprehension of graphs. In AVI, pages 620-627.
  25. McGrath, C. and Blythe, J. (2004). Do you see what I want you to see? the effects of motion and spatial layout on viewers' perceptions of graph structure. J. Soc. Structure, 5(2):2.
  26. McGrath, C., Blythe, J., and Krackhardt, D. (1997). The effect of spatial arrangement on judgments and errors in interpreting graphs. Social Networks, 19(3):223- 242.
  27. Novick, L. R. (2006). The importance of both diagrammatic conventions and domain-specific knowledge for diagram literacy in science: The hierarchy as an illustrative case. In Diagrammatic representation and inference, pages 1-11. Springer.
  28. Purchase, H. C. (2002). Metrics for graph drawing aesthetics. J. Vis. Languages & Computing, 13(5):501-516.
  29. Purchase, H. C., Hoggan, E., and Görg, C. (2007). How important is the mental map: an empirical investigation of a dynamic graph layout algorithm. In Graph drawing, pages 184-195. Springer.
  30. Purchase, H. C., McGill, M., Colpoys, L., and Carrington, D. (2001). Graph drawing aesthetics and the comprehension of uml class diagrams: an empirical study. In IEEE PacificVis , volume 9, pages 129-137.
  31. Schulz, H.-J., Nocke, T., Heitzler, M., and Schumann, H. (2013). A design space of visualization tasks. IEEE TVCG, 19(12):2366-2375.
  32. Shah, P. and Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational Psychology Review, 14(1):47-69.
  33. Tennekes, M. and de Jonge, E. (2014). Tree colors: color schemes for tree-structured data. IEEE TVCG, 20(12):2072-2081.
  34. Tominski, C., Forsell, C., and Johansson, J. (2012). Interaction Support for Visual Comparison Inspired by Natural Behavior. IEEE TVCG, 18(12):2719-2728.
  35. Vehlow, C., Beck, F., and Weiskopf, D. (2015). The state of the art in visualizing group structures in graphs. In EuroVis STAR.
  36. von Landesberger, T., Gorner, M., and Schreck, T. (2009). Visual analysis of graphs with multiple connected components. In IEEE VAST, pages 155-162.
  37. Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J.-D., and Fellner, D. W. (2011). Visual analysis of large graphs: stateof-the-art and future research challenges. In CGF, volume 30, pages 1719-1749. Wiley.
  38. Zimbardo, P. G. and Gerrig, R. J. (2008). Psychologie. Pearson Studium.
Download


Paper Citation


in Harvard Style

von Landesberger T., Pohl M., Wallner G., Distler M. and Ballweg K. (2017). Investigating Graph Similarity Perception: A Preliminary Study and Methodological Challenges . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 241-250. DOI: 10.5220/0006137202410250


in Bibtex Style

@conference{ivapp17,
author={Tatiana von Landesberger and Margit Pohl and Günter Wallner and Martin Distler and Kathrin Ballweg},
title={Investigating Graph Similarity Perception: A Preliminary Study and Methodological Challenges},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},
year={2017},
pages={241-250},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006137202410250},
isbn={978-989-758-228-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - Investigating Graph Similarity Perception: A Preliminary Study and Methodological Challenges
SN - 978-989-758-228-8
AU - von Landesberger T.
AU - Pohl M.
AU - Wallner G.
AU - Distler M.
AU - Ballweg K.
PY - 2017
SP - 241
EP - 250
DO - 10.5220/0006137202410250