Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation
Kamila Mazur, Renata Kalicka, Andrzej F. Frydrychowski, Pawel J. Winklewski
2017
Abstract
Experiments were performed in a group of 19 healthy, non-smoking volunteers. The experiment consisted of three apnoeas, sequentially: 30 s apnoea, 60 s apnoea and maximal, that could be done, apnoea. The breath-hold was separated for 5 minutes rest. The following parameters were measured and obtained for further analysis: blood parameters, artery diameter of the internal carotid artery, end-tidal CO2 in expired air, the cardiac (from 0.5 to 5.0 Hz) and slow (< 0.5 Hz) components of subarachnoid space width signal. As a result of the experiment, we observed two different reactions, using the same experimental procedure. It seemed to indicate two different operating modes and two separate models. As a consequence, there are two subsets of slow subarachnoid space width responses to breath-hold in humans. A positive subarachnoid space width changes (slow) component depends on changes in heart rate, pulsatility index and cerebral blood flow velocity. A negative subarachnoid space width changes component is driven by heart rate changes and pulsatility index changes. The different heart-generated arterial pulsation response to experimental breath-hold provides new insights into our understanding of the complex mechanisms governing the adaptation to apnoea in humans. We propose a mathematical methodology that can be used in further clinical research.
References
- Cassaglia, P. A., Griffiths, R. I., Walker, A. M., 2008. Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 294: R1255-61.
- Cassaglia, P. A., Griffiths, R. I., Walker, A. M., 2009. Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep. Journal of Applied Physiology. 106: 1050-6.
- Drake, R., Vogl, A. W., Mitchell, A. W. M., 2009. Gray's Anatomy for Students. Elsevier Health Sciences.
- Everitt, B. S., Landau, S., Leese, M., 2001. Cluster Analysis (Fourth ed.). Arnold, London.
- Frydrychowski, A. F., Guminski, W., Rojewski, M., Kaczmarek, J., Juzwa, W., 2002. Technical foundations for noninvasive assessment of changes in the width of the subarachnoid space with nearinfrared transillumination-backscattering sounding (NIR-TBSS). IEEE Transactions on Biomedical Engineering. 49, 887-904.
- Frydrychowski, A. F., Plucinski, J., 2007. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination-backscattering sounding, part 2: clinical verification in the patient. Journal of Biomedical Optics. 12, 044016.
- Foster, G.E., Sheel, A.W., 2005. The human diving response, its function, and its control. Scandinavian Journal of Medical Science in Sports. 15, 3-12.
- Jolly, T. A., Bateman, G. A., Levi, C. R., Parsons, M. W., Michie, P. T., Karayanidis, F., 2013. Early detection of microstructural white matter changes associated with arterial pulsatility. Frontiers in Human Neuroscience. 7, 782.
- Kalicka, R., 2014. Basics of data analysis, Gdansk University of Technology Publishing, Gdansk.
- Kalicka, R., 2013. Mathematical Modeling of Physio logical Systems to Aid in Diagnosis and Therapy. Academic Publishing House EXIT, Warsaw.
- Kazmierski, R., 2011. Podreczniki diagnostyki ultrasonograficznej w neurologii. Czelej.
- Li, Z., Zhang, M., Xin, Q., Li, J., Chen, G., Liu, F., Li, J., 2011. Correlation analysis between prefrontal oxygenation oscillations and cerebral artery hemodynamics in humans. Microvascular Research. 82, 304-10.
- Linninger, A. A., Tsakiris, C., Zhu, D. C., Xenos, M., Roycewicz, P., Danziger, Z., Penn, R., 2005. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Transactions on Biomedical Engineering. 52, 557-565.
- Mazur, K., Kalicka, R., 2014. Modeling of subarachnoid space width changes caused by blood circulation in brain vessels. Proceedings of the Twentieth National Conference on Applications of Mathematics in Biology and Medicine.
- Paton, J. F., Boscan, P., Pickering, A.E., Nalivaiko, E., 2005. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Research Reviews. 49, 555-565.
- Reis, D. J., Golanov, E. V., Galea, E., Feinstein, D. L., 1997. Central neurogenic neuroprotection: central neural systems that protect the brain from hypoxia and ischemia. Annals of the New York Academy of Sciences. 835, 168-86.
- Stanisz, A., 2007. Comprehensible statistics course using STATISTICA.PL - examples from medicine, vol. 1. Basic Statistics, vol. 2. Linear and non-linear models, vol. 3. Multidimensional Analyses. StatSoft, Krakow.
- Wagner, B.P., Gertsch, S., Ammann, R.A., Pfenninger, J., 2003. Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow. Intensive Care Medicine. 29, 196-200.
- Wagshul, M. E., Eide, P. K., Madsen, J. R., 2011. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 8, 5.
- Winklewski, P. J., Kot, J., Frydrychowski, A. F., Nuckowska, M. K., Tkachenko, Y., 2013. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow. Diving and Hyperbaric Medicine Journal. 43, 148-56.
- Winklewski, P. J., Gruszecki, M., Wolf, J., Swierblewska, E., Kunicka, K., Wszedybyl-Winklewska, M., Guminski, W., Zabulewicz, J., Frydrychowski, A. F., Bieniaszewski, L., Narkiewicz, K.. 2015. Wavelet transform analysis to assess oscillations in pial artery pulsation at the human cardiac frequency. Microvascular Research. 99, 86-91.
- Winklewski, P. J., Barak, O., Madden, D., Gruszecka, A., Gruszecki, M., Guminski, W., Kot, J., Frydrychowski, A. F., Drvis, I., Dujic, Z., 2015 Effect of Maximal Apnoea Easy-Going and Struggle Phases on Subarachnoid Width and Pial Artery Pulsation in Elite Breath-Hold Divers. PLoS One. 10, e0135429.
- Winklewski, P. J., Tkachenko, Y., Mazur, K., Kot, J., Gruszecki, M., Guminski, W., Czuszynski, K., Wtorek, J., Frydrychowski, A. F., 2015. Sympathetic Activation Does Not Affect the Cardiac and Respiratory Contribution to the Relationship between Blood Pressure and Pial Artery Pulsation Oscillations in Healthy Subjects. PLoS One. 10(8):e0135751.
- Wszedybyl-Winklewska, M., Wolf, J., Swierblewska, E., Kunicka, K., Gruszecki, M., Guminski, W., Winklewski, P. J., Frydrychowski, A. F., Bieniaszewski, L., Narkiewicz, K., 2015. Pial artery and subarachnoid width response to apnoea in normal humans. Journal of Hypertension. 33, 1811-7; discussion 1817-8.
Paper Citation
in Harvard Style
Mazur K., Kalicka R., Frydrychowski A. and Winklewski P. (2017). Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017) ISBN 978-989-758-214-1, pages 140-147. DOI: 10.5220/0006139901400147
in Bibtex Style
@conference{bioinformatics17,
author={Kamila Mazur and Renata Kalicka and Andrzej F. Frydrychowski and Pawel J. Winklewski},
title={Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017)},
year={2017},
pages={140-147},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006139901400147},
isbn={978-989-758-214-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017)
TI - Modeling of Cardiac Component of Subarachnoid Space Changes in Apnoea Resulting as a Function of Blood Pressure and Blood Flow Parameters - Two Mechanizm of Regulation
SN - 978-989-758-214-1
AU - Mazur K.
AU - Kalicka R.
AU - Frydrychowski A.
AU - Winklewski P.
PY - 2017
SP - 140
EP - 147
DO - 10.5220/0006139901400147