A Minimally Invasive Method for Beat-by-Beat Estimation of Cardiac Pressure-Volume Loops

Shaun Davidson, Chris Pretty, Shun Kamoi, Thomas Desaive, J. Geoffrey Chase

2017

Abstract

This paper develops a minimally invasive means of estimating a patient-specific cardiac pressure-volume loop beat-to-beat. This method involves estimating the left ventricular pressure and volume waveforms using clinically available information including heart rate and aortic pressure, supported by a baseline echocardiography reading. Validation of the method was performed across an experimental data set spanning 5 Piétrain pigs, 46,318 heartbeats and a diverse clinical protocol. The method was able to accurately locate a pressure-volume loop, identifying the end-diastolic volume, end-systolic volume, mean-diastolic pressure and mean-systolic pressure of the ventricle with reasonable accuracy. While there were larger percentage errors associated with stroke work derived from the estimated pressure-volume loops, there was a strong correlation (average R value of 0.83) between the estimated and measured stroke work values. These results provide support for the potential of the method to track patient condition, in real-time, in a clinical environment. This method has the potential to yield additional information from readily available waveforms to aid in clinical decision making.

References

  1. Angus, D. C., Linde-Zwirble, W. T., Lidicker, J., Clermont, G., Carcillo, J. & Pinsky, M. R. 2001. Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs Of Care. Critical Care Medicine, 29, 1303-1310.
  2. Baan, J. & Van Der Velde, E. T. 1988. Sensitivity of Left Ventricular End-Systolic Pressure-Volume Relation to Type of Loading Intervention in Dogs. Circulation Research, 62, 1247-1258.
  3. Broscheit, J.-A., Weidemann, F., Strotmann, J., Steendijk, P., Karle, H., Roewer, N. & Greim, C.-A. 2006. TimeVarying Elastance Concept Applied To The Relation Of Carotid Arterial Flow Velocity And Ventricular Area. Journal of Cardiothoracic and Vascular Anesthesia, 20, 340-346.
  4. Burkhoff, D., De Tombe, P. P. & Hunter, W. C. 1993. Impact of Ejection on Magnitude and Time Course of Ventricular Pressure-Generating Capacity. American Journal of Physiology-Heart and Circulatory Physiology, 265, H899-H909.
  5. Burkhoff, D. & Sagawa, K. 1986. Ventricular Efficiency Predicted By an Analytical Model. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 250, R1021-R1027.
  6. Chatterjee, K. 2009. The Swan-Ganz Catheters: Past, Present, and Future A Viewpoint. Circulation, 119, 147-152.
  7. Chen, C.-H., Fetics, B., Nevo, E., Rochitte, C. E., Chiou, K.-R., Ding, P.-A., Kawaguchi, M. & Kass, D. A. 2001. Noninvasive Single-Beat Determination of Left Ventricular End-Systolic Elastance in Humans. Journal of the American College of Cardiology, 38, 2028-2034.
  8. Davidson, S., Pretty, C., Pironet, A., Desaive, T., Jannsen, N., Lambermont, B., Morimont, P. & Chase, J. G. 2016. Estimation of Ventricular Dead Space Volume through Use of Frank-Starling Curves. Journal of Physiology (London) (In Review).
  9. Ferrandis, M.-J., Ryden, I., Lindahl, T. L. & Larsson, A. 2013. Ruling out Cardiac Failure: Cost-Benefit Analysis of a Sequential Testing Strategy with NtProbnp before Echocardiography. Upsala Journal of Medical Sciences, 118, 75-79.
  10. Frazier, S. K. & Skinner, G. J. 2008. Pulmonary Artery Catheters: State of the Controversy. Journal of Cardiovascular Nursing, 23, 113-121.
  11. Hall, J. E. 2010. Guyton and Hall Textbook of Medical Physiology, Elsevier Health Sciences.
  12. Jardin, F., Farcot, J.-C., Boisante, L., Curien, N., Margairaz, A. & Bourdarias, J.-P. 1981. Influence of Positive EndExpiratory Pressure on Left Ventricular Performance. New England Journal of Medicine, 304, 387-392.
  13. Kamoi, S., Pretty, C., Docherty, P., Squire, D., Revie, J., Chiew, Y. S., Desaive, T., Shaw, G. M. & Chase, J. G. 2014. Continuous Stroke Volume Estimation from Aortic Pressure Using Zero Dimensional Cardiovascular Model: Proof of Concept Study from Porcine Experiments.
  14. Karunanithi, M. K. & Feneley, M. P. 2000. Single-Beat Determination of Preload Recruitable Stroke Work Relationship: Derivation and Evaluation in Conscious Dogs. Journal of the American College of Cardiology, 35, 502-513.
  15. Kastrup, M., Markewitz, A., Spies, C., Carl, M., Erb, J., Grosse, J. & Schirmer, U. 2007. Current Practice of Hemodynamic Monitoring and Vasopressor and Inotropic Therapy in Post Operative Cardiac Surgery Patients in Germany: Results from a Postal Survey. Acta Anaesthesiologica Scandinavica, 51, 347-358.
  16. Klabunde, R. 2011. Cardiovascular Physiology Concepts, Lippincott Williams & Wilkins.
  17. Klotz, S., Hay, I., Dickstein, M. L., Yi, G.-H., Wang, J., Maurer, M. S., Kass, D. A. & Burkhoff, D. 2006. Single-Beat Estimation of End-Diastolic PressureVolume Relationship: A Novel Method with Potential for Noninvasive Application. American Journal of Physiology-Heart and Circulatory Physiology, 291, H403-H412.
  18. Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F. A., Foster, E., Goldstein, S. A. & Kuznetsova, T. 2015. Recommendations For Cardiac Chamber Quantification By Echocardiography In Adults: An Update From The American Society Of Echocardiography And The European Association Of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28, 1-39. E14.
  19. Lee, W.-S., Huang, W.-P., Yu, W.-C., Chiou, K.-R., Ding, P. Y.-A. & Chen, C.-H. 2003. Estimation of Preload Recruitable Stroke Work Relationship by a Single-Beat Technique in Humans. American Journal of Physiology-Heart and Circulatory Physiology, 284, H744-H750.
  20. Little, W., Cheng, C., Mumma, M., Igarashi, Y., VintenJohansen, J. & Johnston, W. 1989. Comparison Of Measures Of Left Ventricular Contractile Performance Derived From Pressure-Volume Loops In Conscious Dogs. Circulation, 80, 1378-1387.
  21. Little, W. C. 1985. The Left Ventricular Dp/Dtmax-EndDiastolic Volume Relation in Closed-Chest Dogs. Circulation Research, 56, 808-815.
  22. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., Das, S. R., De Ferranti, S., Després, J.-P. & Fullerton, H. J. 2015. Heart Disease and Stroke Statistics-2016 Update A Report from The American Heart Association. Circulation, Cir. 0000000000000350.
  23. Nguyen, H. B., Rivers, E. P., Abrahamian, F. M., Moran, G. J., Abraham, E., Trzeciak, S., Huang, D. T., Osborn, T., Stevens, D. & Talan, D. A. 2006. Severe Sepsis and Septic Shock: Review of the Literature and Emergency Department Management Guidelines. Annals of Emergency Medicine, 48, 54. E1.
  24. Pineda, L. A., Hathwar, V. S. & Grant, B. J. 2001. Clinical Suspicion of Fatal Pulmonary Embolism. Chest Journal, 120, 791-795.
  25. Sagawa, K. 1981. Editorial: The End-Systolic PressureVolume Relation Of The Ventricle: Definition, Modifications And Clinical Use. Circulation, 63.
  26. Senzaki, H., Chen, C.-H. & Kass, D. A. 1996. Single-Beat Estimation of End-Systolic Pressure-Volume Relation in Humans A New Method with the Potential for Noninvasive Application. Circulation, 94, 2497-2506.
  27. Stevenson, D., Revie, J., Chase, J. G., Hann, C. E., Shaw, G. M., Lambermont, B., Ghuysen, A., Kolh, P. & Desaive, T. 2012a. Algorithmic Processing Of Pressure Waveforms to Facilitate Estimation of Cardiac Elastance. Biomedical Engineering Online, 11, 1-16.
  28. Stevenson, D., Revie, J., Chase, J. G., Hann, C. E., Shaw, G. M., Lambermont, B., Ghuysen, A., Kolh, P. & Desaive, T. 2012b. Beat-To-Beat Estimation of the Continuous Left and Right Cardiac Elastance from Metrics Commonly Available In Clinical Settings. Biomedical Engineering Online, 11, 73.
  29. Suga, H. 1990. Ventricular Energetics. Physiological Reviews, 70, 247-277.
  30. Suga, H., Sagawa, K. & Shoukas, A. A. 1973. Load Independence of the Instantaneous Pressure-Volume Ratio of the Canine Left Ventricle and Effects of Epinephrine and Heart Rate on the Ratio. Circulation Research, 32, 314-322.
  31. Vieillard-Baron, A., Slama, M., Cholley, B., Janvier, G. & Vignon, P. 2008. Echocardiography in the Intensive Care Unit: From Evolution to Revolution? Intensive Care Medicine, 34, 243-249.
  32. Vincent, J.-L. & Gerlach, H. 2004. Fluid Resuscitation in Severe Sepsis and Septic Shock: An Evidence-based Review. Critical Care Medicine, 32, S451-S454.
Download


Paper Citation


in Harvard Style

Davidson S., Pretty C., Kamoi S., Desaive T. and Chase J. (2017). A Minimally Invasive Method for Beat-by-Beat Estimation of Cardiac Pressure-Volume Loops . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017) ISBN 978-989-758-212-7, pages 54-63. DOI: 10.5220/0006140200540063


in Bibtex Style

@conference{biosignals17,
author={Shaun Davidson and Chris Pretty and Shun Kamoi and Thomas Desaive and J. Geoffrey Chase},
title={A Minimally Invasive Method for Beat-by-Beat Estimation of Cardiac Pressure-Volume Loops},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)},
year={2017},
pages={54-63},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006140200540063},
isbn={978-989-758-212-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)
TI - A Minimally Invasive Method for Beat-by-Beat Estimation of Cardiac Pressure-Volume Loops
SN - 978-989-758-212-7
AU - Davidson S.
AU - Pretty C.
AU - Kamoi S.
AU - Desaive T.
AU - Chase J.
PY - 2017
SP - 54
EP - 63
DO - 10.5220/0006140200540063