Flow Parameters Derived from Impedance Pneumography after Nonlinear Calibration based on Neural Networks

Marcel Młyńczak, Gerard Cybulski

2017

Abstract

Impedance pneumography (IP) is mainly used as a noninvasive method to measure respiratory rate, tidal volume or minute ventilation. It could also register flow-related signals, after differentiation, from spirometrybased forced vital capacity maneuvers or ambulatory-based signals reflecting flow values during natural activity. The aim of this paper is to assess the possibility of improving the accuracy of flow parameters calculated by IP, by using nonlinear neural network correction (as opposed to simple linear calibration), and to evaluate the impact of various calibration procedures and neural network configurations. Ten students carried out fixed static breathing sequences, for both calibration and testing. A reference pneumotachometer and the Pneumonitor 2 were used. The validation of calculating peak and mean flow value during each inspiration and expiration was considered. A mean accuracy of 80% was achieved for a separate neural network with two hidden layers with 10 neurons in each layer, trained individually for each subject and body position, using the data from the longest, fixed calibration procedure. Simple linear modeling achieved only 72.5%.

References

  1. Ansari, S., Ward, K., and Najarian, K. (2016). Motion Artifact Suppression in Impedance Pneumography Signal for Portable Monitoring of Respiration: an Adaptive Approach. IEEE J. Biomed. Heal. Informatics, 11(4):1-1.
  2. Baemani, M. J., Monadjemi, A., and Moallem, P. (2008). Detection of respiratory abnormalities using artificial neural networks. Journal of Computer Science, 4(8):663-667.
  3. Gracia, J., Seppa, V. P., and Viik, J. (2015). Regional impedance pneumography heterogeneity during airway opening pressure chirp oscillations. Int. J. Bioelectromagn., 17(1):42-51.
  4. Houtveen, J. H., Groot, P. F. C., and De Geus, E. J. C. (2006). Validation of the thoracic impedance derived respiratory signal using multilevel analysis. Int. J. Psychophysiol., 59(2):97-106.
  5. Jafari, S., Arabalibeik, H., and Agin, K. (2010). Classification of normal and abnormal respiration patterns using flow volume curve and neural network. In Health Informatics and Bioinformatics (HIBIT), 2010 5th International Symposium On, pages 110-113. IEEE.
  6. Koivumaki, T., Vauhkonen, M., Kuikka, J. T., and Hakulinen, M. a. (2012). Bioimpedance-based measurement method for simultaneous acquisition of respiratory and cardiac gating signals. Physiol. Meas., 33(8):1323-1334.
  7. Lai, C.-L., Lee, J.-S., and Chen, J.-C. (2015). A curve fitting approach using ann for converting ct number to linear attenuation coefficient for ct-based pet attenuation correction. IEEE Transactions on Nuclear Science, 62(1):164-170.
  8. Lee, S. J., Motai, Y., Weiss, E., and Sun, S. S. (2012). Irregular breathing classification from multiple patient datasets using neural networks. IEEE Transactions on Information Technology in Biomedicine, 16(6):1253- 1264.
  9. Leonhardt, S. and Lachmann, B. (2012). Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring? Intensive Care Med., 38:1917-1929.
  10. Li, Y., Pan Fua, Z. L., Lia, X., and Lina, Z. (2015). Biaxial angle sensor calibration method based on artificial neural network. Chemical Engineering, 46:361-366.
  11. Mathworks (2016). Fit Data with a Neural Network. https://www.mathworks.com/help/nnet/gs/fitdata-with-a-neural-network.html. [Online; accessed 07-October-2016].
  12. Min, M. and Paavle, T. (2013). Improved extraction of information in bioimpedance measurements. In J. Phys. Conf. Ser., volume 434, pages 0120291-4.
  13. Mly Áczak, M., Niewiadomski, W., Z?yliÁski, M., and Cybulski, G. (2015a). Assessment of calibration methods on impedance pneumography accuracy. Biomed. Eng. / Biomed. Tech.
  14. Mly Áczak, M., Niewiadomski, W., Z?yliÁski, M., and Cybulski, G. (2015b). Verification of the Respiratory Parameters Derived from Impedance Pnumography during Normal and Deep Breathing in Three Body Postures. In IFMBE Proc., volume 45, pages 162-165.
  15. Monteiro, R. L. S., Carneiro, T. K. G., Fontoura, J. R. A., Da Silva, V. L., Moret, M. A., and De Barros Pereira, H. B. (2016). A model for improving the learning curves of artificial neural networks. PLoS One, 11(2).
  16. Ojarand, J., Annus, P., and Min, M. (2013). Optimisation of multisine waveform for bio-impedance spectroscopy. In J. Phys. Conf. Ser., volume 434, pages 0120301-4.
  17. Poupard, L., Mathieu, M., Sartène, R., and Goldman, M. (2008). Use of thoracic impedance sensors to screen for sleep-disordered breathing in patients with cardiovascular disease. Physiol. Meas., 29(2):255-267.
  18. Roebuck, A., Monasterio, V., Gederi, E., Osipov, M., Behar, J., Malhotra, A., Penzel, T., and Clifford, G. (2013). A review of signals used in sleep analysis. Physiological measurement, 35(1):R1.
  19. Seppa, V. P., Hyttinen, J., Uitto, M., Chrapek, W., and Viik, J. (2013a). Novel electrode configuration for highly linear impedance pneumography. Biomed. Eng. / Biomed. Tech., 58(1):35-38.
  20. Seppa, V.-P., Hyttinen, J., and Viik, J. (2011). A method for suppressing cardiogenic oscillations in impedance pneumography. Physiol. Meas., 32(3):337-345.
  21. Seppa, V.-P., Pelkonen, A. S., Kotaniemi-Syrjanen, A., Makela, M. J., Viik, J., and Malmberg, L. P. (2013b). Tidal breathing flow measurement in awake young children by using impedance pneumography. J. Appl. Physiol., 115(11):1725-31.
  22. Seppa, V.-P., Pelkonen, A. S., Kotaniemi-Syrjanen, A., Viik, J., Makela, M. J., and Malmberg, L. P. (2016). Tidal flow variability measured by impedance pneumography relates to childhood asthma risk. Eur. Respir. J., pages 1-10.
  23. Seppa, V.-P., Viik, J., and Hyttinen, J. (2010). Assessment of pulmonary flow using impedance pneumography.
  24. IEEE Trans. Biomed. Eng., 57(9):2277-2285.
Download


Paper Citation


in Harvard Style

Młyńczak M. and Cybulski G. (2017). Flow Parameters Derived from Impedance Pneumography after Nonlinear Calibration based on Neural Networks . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017) ISBN 978-989-758-212-7, pages 70-77. DOI: 10.5220/0006146800700077


in Bibtex Style

@conference{biosignals17,
author={Marcel Młyńczak and Gerard Cybulski},
title={Flow Parameters Derived from Impedance Pneumography after Nonlinear Calibration based on Neural Networks},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)},
year={2017},
pages={70-77},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006146800700077},
isbn={978-989-758-212-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)
TI - Flow Parameters Derived from Impedance Pneumography after Nonlinear Calibration based on Neural Networks
SN - 978-989-758-212-7
AU - Młyńczak M.
AU - Cybulski G.
PY - 2017
SP - 70
EP - 77
DO - 10.5220/0006146800700077