Visualizing Temporal Graphs using Visual Rhythms - A Case Study in Soccer Match Analysis

Daniele C. Uchoa Maia Rodrigues, Felipe A. Moura, Sergio Augusto Cunha, Ricardo da S. Torres

2017

Abstract

In several applications, a huge amount of graph data have been generated, demanding the creation of appropriate tools for graph visualization. One class of graph data which is attracting a lot of attention recently are the temporal graphs, which encode how objects and their relationships evolve over time. This paper introduces the Graph Visual Rhythm, a novel image-based representation to visualize changing patterns typically found in temporal graphs. The use of visual rhythms is motivated by its capacity of providing a lot of contextual information about graph dynamics in a compact way. We validate the use of graph visual rhythms through the creation of a visual analytics tool to support the decision-making process based on complex-network-oriented soccer match analysis.

References

  1. Bach, B., Pietriga, E., and Fekete, J. (2014). Visualizing dynamic networks with matrix cubes. In CHI Conference on Human Factors in Computing Systems, CHI'14, Toronto, ON, Canada - April 26 - May 01, 2014, pages 877-886.
  2. Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2016). A taxonomy and survey of dynamic graph visualization. Computer Graphics Forum.
  3. Behrisch, M., Bach, B., Riche, N. H., Schreck, T., and Fekete, J. (2016). Matrix reordering methods for table and network visualization. Comput. Graph. Forum, 35(3):693-716.
  4. Bezerra, F. N. and Lima, E. (2006). Low cost soccer video summaries based on visual rhythm. In Proceedings of the 8th ACM SIGMM International Workshop on Multimedia Information Retrieval, MIR 2006, October 26- 27, 2006, Santa Barbara, California, USA, pages 71- 78.
  5. Brandes, U. and Corman, S. R. (2003). Visual unrolling of network evolution and the analysis of dynamic discourse. Information Visualization, 2(1):40-50.
  6. Brandes, U., Indlekofer, N., and Mader, M. (2012). Visualization methods for longitudinal social networks and stochastic actor-oriented modeling. Social Networks, 34(3):291-308.
  7. Burch, M., Höferlin, M., and Weiskopf, D. (2011). Layered timeradartrees. In 15th International Conference on Information Visualisation, IV 2011, London, United Kingdom, July 13-15, 2011, pages 18-25.
  8. Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro, N. (2011). Time-Varying Graphs and Dynamic Networks Ad-hoc, Mobile, and Wireless Networks. 6811(5):346-359.
  9. Chun, S. S., Kim, H., Kim, J., Oh, S., and Sull, S. (2002). Fast text caption localization on video using visual rhythm. In Recent Advances in Visual Information Systems, 5th International Conference, VISUAL 2002 Hsin Chu, Taiwan, March 11-13, 2002, Proceedings, pages 259-268.
  10. Clemente, F., Couceiro, M., Martins, F., and Mendes, R. (2015). Using network metrics in soccer: A macroanalysis. J Sports Sci., 45:123134.
  11. Costa, L. d. F., Rodrigues, F. A., Travieso, G., and Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in physics, 56(1):167-242.
  12. Cotta, C., Mora, A. M., Merelo, J. J., and Merelo-Molina, C. (2013). A network analysis of the 2010 fifa world cup champion team play. Journal of Systems Science and Complexity, 26(1):21-42.
  13. da Silva Pinto, A., Schwartz, W. R., Pedrini, H., and de Rezende Rocha, A. (2015). Using visual rhythms for detecting video-based facial spoof attacks. IEEE Trans. Information Forensics and Security, 10(5):1025-1038.
  14. Duch, J., Waitzman, J. S., and Amaral, L. a. N. (2010). Quantifying the performance of individual players in a team activity. PloS one, 5(6):e10937.
  15. Figueroa, P. J., Leite, N. J., and Barros, R. M. L. (2006a). Background recovering in outdoor image sequences: An example of soccer players segmentation. Image Vision Comput., 24(4):363-374.
  16. Figueroa, P. J., Leite, N. J., and Barros, R. M. L. (2006b). Tracking soccer players aiming their kinematical motion analysis. Computer Vision and Image Understanding, 101(2):122-135.
  17. Grund, T. (2012). Network structure and team performance: The case of english premier league soccer teams. Social Networks, 34(4):682-690.
  18. Guimara˜es, S. J. F., Couprie, M., de Albuquerque Araújo, A., and Leite, N. J. (2003). Video segmentation based on 2d image analysis. Pattern Recognition Letters, 24(7):947-957.
  19. Hurter, C., Ersoy, O., Fabrikant, S. I., Klein, T. R., and Telea, A. C. (2014). Bundled visualization of dynamic graph and trail data. IEEE Transactions on Visualization and Computer Graphics, 20(8):1141-1157.
  20. Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD, pages 177-187.
  21. Moura, F. A., Martins, L. E., and Cunha, S. E. (2014). Analysis of football game-related statistics using multivariate techniques. J Sports Sci., 32(20):1881-1887.
  22. Moura, F. A., Martins, L. E. B., Anido, R. D. O., Barros, R. M. L. D., and Cunha, S. A. (2012). Quantitative analysis of brazilian football players' organisation on the pitch. Sports Biomechanics, 11(1):85-96. PMID: 22518947.
  23. Moura, F. A., Martins, L. E. B., Anido, R. O., Ruffino, P. R. C., Barros, R. M. L., and Cunha, S. A. (2013). A spectral analysis of team dynamics and tactics in Brazilian football. Journal of sports sciences, 31(14):1568-77.
  24. Nahman, J. and Peri, D. (2017). Path-set based optimal planning of new urban distribution networks. International Journal of Electrical Power & Energy Systems, 85:42 - 49.
  25. Ngo, C., Pong, T., and Chin, R. T. (1999). Detection of gradual transitions through temporal slice analysis. In 1999 Conference on Computer Vision and Pattern Recognition (CVPR 7899), 23-25 June 1999, Ft. Collins, CO, USA, pages 1036-1041.
  26. Passos, P., Davids, K., Araujo, D., Paz, N., Minguéns, J., and Mendes, J. (2011). Networks as a novel tool for studying team ball sports as complex social systems. Journal of Science and Medicine in Sport, 14(2):170- 176.
  27. Pen˜a, J. L. and Touchette, H. (2012). A network theory analysis of football strategies. arXiv preprint arXiv:1206.6904.
  28. Preparata, F. P. and Shamos, M. (2012). Computational geometry: an introduction. Springer Science & Business Media.
  29. Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., and Amblard, F. (2011). Time-Varying Graphs and Social Network Analysis: Temporal Indicators and Metrics.
  30. Travenc¸olo, B. A. N. and Costa, L. d. F. (2008). Accessibility in complex networks. Physics Letters A, 373(1):89-95.
  31. Travenc¸olo, B. A. N., Viana, M. P., and Costa, L. D. F. (2009). Border detection in complex networks. New Journal of Physics, 11.
  32. Vehlow, C., Burch, M., Schmauder, H., and Weiskopf, D. (2013). Radial layered matrix visualization of dynamic graphs. In 17th International Conference on Information Visualisation, IV 2013, London, United Kingdom, July 16-18, 2013, pages 51-58.
  33. Zhao, F. and Tung, A. K. H. (2012). Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB, 6(2):85-96.
Download


Paper Citation


in Harvard Style

C. Uchoa Maia Rodrigues D., A. Moura F., Cunha S. and da S. Torres R. (2017). Visualizing Temporal Graphs using Visual Rhythms - A Case Study in Soccer Match Analysis . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 96-107. DOI: 10.5220/0006153000960107


in Bibtex Style

@conference{ivapp17,
author={Daniele C. Uchoa Maia Rodrigues and Felipe A. Moura and Sergio Augusto Cunha and Ricardo da S. Torres},
title={Visualizing Temporal Graphs using Visual Rhythms - A Case Study in Soccer Match Analysis},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},
year={2017},
pages={96-107},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006153000960107},
isbn={978-989-758-228-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - Visualizing Temporal Graphs using Visual Rhythms - A Case Study in Soccer Match Analysis
SN - 978-989-758-228-8
AU - C. Uchoa Maia Rodrigues D.
AU - A. Moura F.
AU - Cunha S.
AU - da S. Torres R.
PY - 2017
SP - 96
EP - 107
DO - 10.5220/0006153000960107