Volume-based Human Re-identification with RGB-D Cameras

Serhan Cosar, Claudio Coppola, Nicola Bellotto

2017

Abstract

This paper presents an RGB-D based human re-identification approach using novel biometrics features from the body’s volume. Existing work based on RGB images or skeleton features have some limitations for real-world robotic applications, most notably in dealing with occlusions and orientation of the user. Here, we propose novel features that allow performing re-identification when the person is facing side/backward or the person is partially occluded. The proposed approach has been tested for various scenarios including different views, occlusion and the public BIWI RGBD-ID dataset.

References

  1. Barbosa, I. B., Cristani, M., Del Bue, A., Bazzani, L., and Murino, V. (2012). Re-identification with rgb-d sensors. In European Conference on Computer Vision, pages 433-442. Springer.
  2. Bedagkar-Gala, A. and Shah, S. K. (2014). A survey of approaches and trends in person re-identification. Image and Vision Computing, 32(4):270 - 286.
  3. Bellotto, N. and Hu, H. (2010). A bank of unscented kalman filters for multimodal human perception with mobile service robots. International Journal of Social Robotics, 2(2):121-136.
  4. Chen, D., Yuan, Z., Hua, G., Zheng, N., and Wang, J. (2015). Similarity learning on an explicit polynomial kernel feature map for person re-identification. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1565-1573.
  5. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273-297.
  6. Farenzena, M., Bazzani, L., Perina, A., Murino, V., and Cristani, M. (2010). Person re-identification by symmetry-driven accumulation of local features. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2360-2367.
  7. Ferland, F., Cruz-Maya, A., and Tapus, A. (2015). Adapting an hybrid behavior-based architecture with episodic memory to different humanoid robots. In Robot and Human Interactive Communication (RO-MAN), 2015 24th IEEE International Symposium on, pages 797- 802.
  8. Gordon, C. C., Churchill, T., Clauser, C. E., Bradtmiller, B., and McConville, J. T. (1989). Anthropometric survey of US Army personnel: Summary statistics, interim report for 1988. Technical report, DTIC Document.
  9. Koide, K. and Miura, J. (2016). Identification of a specific person using color, height, and gait features for a person following robot. Robotics and Autonomous Systems, 84:76 - 87.
  10. Kviatkovsky, I., Adam, A., and Rivlin, E. (2013). Color invariants for person reidentification. IEEE Trans. Pattern Anal. Mach. Intell., 35(7):1622-1634.
  11. Li, W., Zhao, R., Xiao, T., and Wang, X. (2014). Deepreid: Deep filter pairing neural network for person reidentification. InThe IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  12. Mitzel, D. and Leibe, B. (2012). Close-range human detection and tracking for head-mounted cameras. In Proceedings of the British Machine Vision Conference, pages 8.1-8.11. BMVA Press.
  13. Munaro, M., Basso, A., Fossati, A., Gool, L. V., and Menegatti, E. (2014a). 3d reconstruction of freely moving persons for re-identification with a depth sensor. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 4512-4519.
  14. Munaro, M., Fossati, A., Basso, A., Menegatti, E., and Van Gool, L. (2014b). One-shot person reidentification with a consumer depth camera. In Gong, S., Cristani, M., Yan, S., and Loy, C. C., editors, Person Re-Identification, pages 161-181. Springer London, London.
  15. Munaro, M., Ghidoni, S., Dizmen, D. T., and Menegatti, E. (2014c). A feature-based approach to people reidentification using skeleton keypoints. In2014 IEEE International Conference on Robotics and Automation (ICRA), pages 5644-5651.
  16. Nanni, L., Munaro, M., Ghidoni, S., Menegatti, E., and Brahnam, S. (2016). Ensemble of different approaches for a reliable person re-identification system. Applied Computing and Informatics, 12(2):142 - 153.
  17. Paisitkriangkrai, S., Shen, C., and van den Hengel, A. (2015). Learning to rank in person re-identification with metric ensembles. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  18. Pala, F., Satta, R., Fumera, G., and Roli, F. (2016). Multimodal person reidentification using rgb-d cameras. IEEE Transactions on Circuits and Systems for Video Technology, 26(4):788-799.
  19. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. (2011). Real-time human pose recognition in parts from single depth images. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 7811, pages 1297-1304, Washington, DC, USA. IEEE Computer Society.
  20. Vezzani, R., Baltieri, D., and Cucchiara, R. (2013). People reidentification in surveillance and forensics: A survey. ACM Comput. Surv., 46(2):29:1-29:37.
  21. Wang, X., Doretto, G., Sebastian, T., Rittscher, J., and Tu, P. (2007). Shape and appearance context modeling. In IN: PROC. ICCV (2007.
  22. Weinrich, C., Volkhardt, M., and Gross, H. M. (2013). Appearance-based 3d upper-body pose estimation and person re-identification on mobile robots. In 2013 IEEE International Conference on Systems, Man, and Cybernetics, pages 4384-4390.
  23. Wengefeld, T., Eisenbach, M., Trinh, T. Q., and Gross, H.- M. (2016). May i be your personal coach? bringing together person tracking and visual re-identification on a mobile robot. ISR 2016.
  24. Yang, Y. and Ramanan, D. (2013). Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell., 35(12):2878-2890.
Download


Paper Citation


in Harvard Style

Cosar S., Coppola C. and Bellotto N. (2017). Volume-based Human Re-identification with RGB-D Cameras . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 389-397. DOI: 10.5220/0006155403890397


in Bibtex Style

@conference{visapp17,
author={Serhan Cosar and Claudio Coppola and Nicola Bellotto},
title={Volume-based Human Re-identification with RGB-D Cameras},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={389-397},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006155403890397},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Volume-based Human Re-identification with RGB-D Cameras
SN - 978-989-758-225-7
AU - Cosar S.
AU - Coppola C.
AU - Bellotto N.
PY - 2017
SP - 389
EP - 397
DO - 10.5220/0006155403890397