Development of a Lab on a Chip Flow Cytometer - Portable and Affordable Flowcytometer for Point of Care Diagnostics in Rural Areas

A. Mohan, N. Marshkole, A. P. Nair, A. Bharadwaj, A. Prabhakar, T. Saiyed

2017

Abstract

We have developed a lab prototype of a microfluidic flow analyzer, which is capable of quick and efficient analysis of biological samples. Low cost and portability makes it suitable for point of care diagnostics in rural area of developing countries. A significant size reduction has been achieved by choosing a microfluidic flow and pumping system, micro-electronic components, integrated circuits boards, and fiber optics. A two dimensional microfluidic chip fabricated with nanolithography technique integrates the fluidics and optics into a single platform. Forward scatters (FSC), side scatter (SSC) and fluorescence (FL) are measured from polystyrene beads as well as from different live cells. Overall dimension achieved for the final prototype is 39 cm x 22 cm x 10 cm.

References

  1. Chattopadhyay PK, Price D a, Harper TF, et al (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12:972-977. doi: 10.1038/nm1371.
  2. Chattopadhyay PK, Roederer M (2012) Cytometry: Today's technology and tomorrow's horizons. Methods 57:251-258. doi: 10.1016/j.ymeth.2012.02.009.
  3. De Rosa SC (2012) Vaccine applications of flow cytometry. Methods 57:383-391. doi: 10.1016/j.ymeth.2012.01.001.
  4. De Rosa SC, Herzenberg L a, Herzenberg L a, Roederer M (2001) 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7:245-248. doi: 10.1038/84701.
  5. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403-411. doi: 10.1038/nature05063.
  6. Glencross D, Scott LE, Jani I V., et al (2002) CD45- assisted PanLeucogating for accurate, cost-effective dual-platform CD4+ T-cell enumeration. Clin Cytom 50:69-77. doi: 10.1002/cyto.10068.
  7. Mao X, Lin SCS, Huang TJ (2009) High-throughput onchip flow cytometry system using “microfluidic drifting” based three-dimensional (3D) hydrodynamic focusing. TRANSDUCERS 2009 - 15th Int Conf Solid-State Sensors, Actuators Microsystems 425- 428. doi: 10.1109/SENSOR.2009.5285473.
  8. Mao X, Nawaz AA, Lin SCS, et al (2012) An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing. Biomicrofluidics. doi: 10.1063/1.3701566.
  9. Martinez AW, Phillips ST, Carrilho E, et al (2008) Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699-3707. doi: 10.1021/ac800112r.
  10. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3-10. doi: 10.1021/ac9013989.
  11. Mohan A, Bharadwaj A, Marshkole N, et al (2015) Optofluidic flow analysis for monitoring of immunity levels. Int Conf Opt Photonics 2015 9654:96540W. doi: 10.1117/12.2182901.
  12. Nunez R (2001) DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 3:67-70.
  13. Rosenauer M, Buchegger W, Finoulst I, et al (2011) Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes. Microfluid Nanofluidics 10:761-771. doi: 10.1007/s10404-010-0707-z.
  14. Saiyed T, Mondal S, Prabhakar A, Krishnamurthy H (2016) Microfluidic-based flow analyzer.
  15. Shapiro HM (1995) Practical Flow Cytometry. Cytometry 19:376-376. doi: 10.1002/cyto.990190414.
  16. Shivhare PK, Bhadra A, Sajeesh P, et al (2016) Hydrodynamic focusing and interdistance control of particle-laden flow for microflow cytometry. Microfluid Nanofluidics. doi: 10.1007/s10404-016- 1752-z.
  17. Telford WG, Hawley T, Subach F, et al (2012) Flow cytometry of fluorescent proteins. Methods 57:318- 330. doi: 10.1016/j.ymeth.2012.01.003.
  18. Thompson a M, Paguirigan a L, Kreutz JE, et al (2014) Microfluidics for single-cell genetic analysis. Lab Chip 14:3135-42. doi: 10.1039/c4lc00175c.
  19. Tung YC, Zhang M, Lin CT, et al (2004) PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes. Sensors Actuators, B Chem 98:356- 367. doi: 10.1016/j.snb.2003.10.010.
  20. Wang Z, El-Ali J, Engelund M, et al (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372-377. doi: 10.1039/b400663a.
  21. Young EWK, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev 39:1036-1048. doi: 10.1039/b909900j.
Download


Paper Citation


in Harvard Style

Mohan A., Marshkole N., P. Nair A., Bharadwaj A., Prabhakar A. and Saiyed T. (2017). Development of a Lab on a Chip Flow Cytometer - Portable and Affordable Flowcytometer for Point of Care Diagnostics in Rural Areas . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017) ISBN 978-989-758-216-5, pages 179-185. DOI: 10.5220/0006175301790185


in Bibtex Style

@conference{biodevices17,
author={A. Mohan and N. Marshkole and A. P. Nair and A. Bharadwaj and A. Prabhakar and T. Saiyed},
title={Development of a Lab on a Chip Flow Cytometer - Portable and Affordable Flowcytometer for Point of Care Diagnostics in Rural Areas},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)},
year={2017},
pages={179-185},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006175301790185},
isbn={978-989-758-216-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)
TI - Development of a Lab on a Chip Flow Cytometer - Portable and Affordable Flowcytometer for Point of Care Diagnostics in Rural Areas
SN - 978-989-758-216-5
AU - Mohan A.
AU - Marshkole N.
AU - P. Nair A.
AU - Bharadwaj A.
AU - Prabhakar A.
AU - Saiyed T.
PY - 2017
SP - 179
EP - 185
DO - 10.5220/0006175301790185