Reactive Agent-based Model for Convergence of Autonomous Vehicles to Parallel Formations Heading to Predefined Directions of Motion

Vander L. S. Freitas, Elbert E. N. Macau

2017

Abstract

In this work we introduce a reactive agent-based model for convergence of autonomous vehicles to parallel formations heading to predefined directions of motion. They interact via rules of repulsion, alignment and attraction. There is also an abstraction of the desired path of motion, represented by a virtual guiding vehicle, which shows the desired direction to be followed by the formation. We performed simulations with different combinations of interaction rules and studied the parameter space. Additionally, we simulate the occurrence of communication failure among agents and the presence of noise. The resulting formations are evaluated by three quantifiers.

References

  1. Chapman, A. D., Study., A. B. R., and Australia. (2009). Numbers of living species in Australia and the world / Arthur D. Chapman. Department of the Environment, Water, Heritage and the Arts [Canberra, ACT].
  2. Couzin, I. D., Krause, J., James, R., Ruxton, G. D., and Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1):1 - 11.
  3. Cucker, F. and Smale, S. (2007). Emergent behavior in flocks. IEEE Transactions on Automatic Control, pages 852-862.
  4. Czirók, A., Barabási, A.-L., and Vicsek, T. (1999). Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Phys. Rev. Lett., 82:209- 212.
  5. Dafflon, B., Gechter, F., Gruer, P., and Koukam, A. (2013). Vehicle platoon and obstacle avoidance: A reactive agent approach. IET Intelligent Transport Systems, 7(3):257-264.
  6. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., and Christensen, A. L. (2016). Evolution of collective behaviors for a real swarm of aquatic surface robots. PLOS ONE, 11(3):1-25.
  7. Herbert-Read, J. E., Perna, A., Mann, R. P., Schaerf, T. M., Sumpter, D. J. T., and Ward, A. J. W. (2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences, 108(46):18726- 18731.
  8. Katz, Y., Tunstrom, K., Ioannou, C. C., Huepe, C., and Couzin, I. D. (2011). Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences, 108(46):18720- 18725.
  9. Kerman, S., Brown, D., and Goodrich, M. A. (2012). Supporting human interaction with robust robot swarms. In Resilient Control Systems (ISRCS), 2012 5th International Symposium on, pages 197-202.
  10. Klein, J. K. (2005). Controlled Collective Motion for Multivehicle Trajectory Tracking. Master's thesis, University of Washington, USA.
  11. Leonard, N., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D., and Davis, R. (2007). Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE, 95(1):48-74.
  12. Paley, D., Leonard, N. E., Sepulchre, R., Grünbaum, D., and Parrish, J. K. (2007). Oscillator models and collective motion: Spatial patterns in the dynamics of engineered and biological networks. IEEE Control Systems Magazine, 27(4):89-105.
  13. Paley, D. A. (2007). Cooperative control of collective motion for ocean sampling with autonomous vehicles. PhD thesis, Princeton University.
  14. Park, C., Cho, N., Lee, K., and Kim, Y. (2015). Formation flight of multiple uavs via onboard sensor information sharing. Sensors, 15:17397-17419.
  15. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph., 21(4):25-34.
  16. Russell, S. J. and Norvig, P. (2003). Artificial Intelligence. Pearson Education, 2 edition.
  17. Salazar, F. J. T. (2012). Deployment and maintenance of a satellite formation flight around L4 and L5 lagrangian points in the earth-moon system based on low cost strategies. PhD thesis, Instituto Nacional de Pesquisas Espaciais.
  18. Strogatz, S. H. (2000). From kuramoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators. Phys. D, 143(1-4):1-20.
  19. Veerman, J. J. P., Lafferriere, G., Caughman, J. S., and Williams, A. (2005). Flocks and formations. Journal of Statistical Physics, 121(5):901-936.
  20. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., and Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226-1229.
  21. Vicsek, T. and Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3-4):71 - 140. Collective motion.
Download


Paper Citation


in Harvard Style

L. S. Freitas V. and E. N. Macau E. (2017). Reactive Agent-based Model for Convergence of Autonomous Vehicles to Parallel Formations Heading to Predefined Directions of Motion . In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-219-6, pages 166-173. DOI: 10.5220/0006187201660173


in Bibtex Style

@conference{icaart17,
author={Vander L. S. Freitas and Elbert E. N. Macau},
title={Reactive Agent-based Model for Convergence of Autonomous Vehicles to Parallel Formations Heading to Predefined Directions of Motion},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2017},
pages={166-173},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006187201660173},
isbn={978-989-758-219-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Reactive Agent-based Model for Convergence of Autonomous Vehicles to Parallel Formations Heading to Predefined Directions of Motion
SN - 978-989-758-219-6
AU - L. S. Freitas V.
AU - E. N. Macau E.
PY - 2017
SP - 166
EP - 173
DO - 10.5220/0006187201660173