ECG-based Biometrics using a Deep Autoencoder for Feature Learning - An Empirical Study on Transferability

Afonso Eduardo, Helena Aidos, Ana Fred

2017

Abstract

Biometric identification is the task of recognizing an individual using biological or behavioral traits and, recently, electrocardiogram has emerged as a prominent trait. In addition, deep learning is a fast-paced research field where several models, training schemes and applications are being actively investigated. In this paper, an ECG-based biometric system using a deep autoencoder to learn a lower dimensional representation of heartbeat templates is proposed. A superior identification performance is achieved, validating the expressiveness of such representation. A transfer learning setting is also explored and results show practically no loss of performance, suggesting that these deep learning methods can be deployed in systems with offline training.

References

  1. Biel, L., Pettersson, O., Philipson, L., and Wide, P. (2001). ECG analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50(3):808-812.
  2. Carreiras, C., Lourenc¸o, A., Silva, H., Fred, A., and Ferreira, R. (2016). Evaluating Template Uniqueness in ECG Biometrics. In Filipe, J., Gusikhin, O., Madani, K., and Sasiadek, J., editors, Informatics in Control, Automation and Robotics: 11th International Conference, ICINCO 2014 Vienna, Austria, September 2-4, 2014 Revised Selected Papers, pages 111-123. Springer International Publishing.
  3. Chollet, F. (2015). Keras. https://github.com/fchollet/keras.
  4. Cohen, N., Sharir, O., and Shashua, A. (2016). On the Expressive Power of Deep Learning: A Tensor Analysis. JMLR Workshop and Conference Proceedings, 49:1- 31.
  5. Del Testa, D. and Rossi, M. (2015). Lightweight Lossy Compression of Biometric Patterns via Denoising Autoencoders. IEEE Signal Processing Letters, 22(12):2304-2308.
  6. Dems?ar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30.
  7. Eldan, R. and Shamir, O. (2016). The Power of Depth for Feedforward Neural Networks. JMLR Workshop and Conference Proceedings, 49:1-34.
  8. Fratini, A., Sansone, M., Bifulco, P., and Cesarelli, M. (2015). Individual identification via electrocardiogram analysis. Biomedical engineering online, 14(1):78.
  9. Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), 9:249-256.
  10. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. Book in preparation for MIT Press.
  11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (Proceedings of NIPS).
  12. Jain, A. K., Nandakumar, K., and Ross, A. (2016). 50 Years of Biometric Research: Accomplishments, Challenges, and Opportunities. Pattern Recognition Letters, 79:1-28.
  13. Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools for Python. https://www.scipy.org/.
  14. Kingma, D. and Ba, J. (2014). Auto-Encoding Variational Bayes. In 2nd International Conference on Learning Representations (ICLR2014).
  15. Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR2015).
  16. Längkvist, M., Karlsson, L., and Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42(1):11-24.
  17. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436-444.
  18. Lourenc¸o, A., Silva, H., Carreiras, C., and Fred, A. (2013). Outlier detection in non-intrusive ecg biometric system. In AIMI International Conf. on Image Analysis and Recognition - ICIAR, pages 43-52.
  19. Marques, F., Carreiras, C., Lourenc¸o, A., Fred, A., and Ferreira, R. (2015). Ecg biometrics using a dissimilarity space representation. In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSTEC 2015), pages 350-359.
  20. Martinez, H. P., Bengio, Y., and Yannakakis, G. (2013). Learning Deep Physiological Models of Affect. IEEE Computational Intelligence Magazine, Special Issue on Computational Intelligence and Affective Computing, 8(2):20-33.
  21. McSharry, P. E., Clifford, G. D., Tarassenko, L., and Smith, L. A. (2003). A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering, 50(3):289-294.
  22. Odinaka, I., Lai, P.-H., Kaplan, A. D., O'Sullivan, J. A., Sirevaag, E. J., and Rohrbaugh, J. W. (2012). ECG Biometric Recognition: A Comparative Analysis. IEEE Transactions on Information Forensics and Security, 7(6):1812-1824.
  23. Page, A., Kulkarni, A., and Mohsenin, T. (2015). Utilizing deep neural nets for an embedded ECG-based biometric authentication system. IEEE Biomedical Circuits and Systems Conference: Engineering for Healthy Minds and Able Bodies, BioCAS 2015 - Proceedings, pages 0-3.
  24. Rahhal, M. M. A., Bazi, Y., Alhichri, H., Alajlan, N., Melgani, F., and Yager, R. R. (2016). Deep learning approach for active classification of electrocardiogram signals. Information Sciences, 345:340-354.
  25. Rattani, A., Roli, F., and Granger, E., editors (2015). Adaptive Biometric Systems. Advances in Computer Vision and Pattern Recognition. Springer International Publishing.
  26. Roli, F., Didaci, L., and Marcialis, G. L. (2008). Adaptive Biometric Systems That Can Improve with Use. In Ratha, N. K. and Govindaraju, V., editors, Advances in Biometrics: Sensors, Algorithms and Systems, pages 447-471. Springer London.
  27. Sameni, R., Shamsollahi, M. B., Jutten, C., and Clifford, G. D. (2007). A nonlinear Bayesian filtering framework for ECG denoising. IEEE Transactions on Biomedical Engineering, 54(12):2172-2185.
  28. Shen, T. W., Tompkins, W. J., and Hu, Y. H. (2002). Onelead ecg for identity verification. In Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, volume 1, pages 62-63 vol.1.
  29. Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout : A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research (JMLR), 15:1929-1958.
  30. Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Training very deep networks. In Advances in Neural Information Processing Systems 28 (Proceedings of NIPS), volume 28, pages 2377-2385.
  31. Theano Development Team (2016). Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688.
  32. Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.- A. (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning (ICML-08).
  33. Wan, Y. and Yao, J. (2008). A Neural Network to Identify Human Subjects with Electrocardiogram Signals. In Proceedings of the world congress on engineering and computer science.
  34. Xiong, P., Wang, H., Liu, M., and Liu, X. (2015). Denoising Autoencoder for Eletrocardiogram Signal Enhancement. Journal of Medical Imaging and Health Informatics, 5(8):1804-1810.
  35. Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems 27 (Proceedings of NIPS), 27:1-9.
Download


Paper Citation


in Harvard Style

Eduardo A., Aidos H. and Fred A. (2017). ECG-based Biometrics using a Deep Autoencoder for Feature Learning - An Empirical Study on Transferability . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 463-470. DOI: 10.5220/0006195404630470


in Bibtex Style

@conference{icpram17,
author={Afonso Eduardo and Helena Aidos and Ana Fred},
title={ECG-based Biometrics using a Deep Autoencoder for Feature Learning - An Empirical Study on Transferability},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={463-470},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006195404630470},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - ECG-based Biometrics using a Deep Autoencoder for Feature Learning - An Empirical Study on Transferability
SN - 978-989-758-222-6
AU - Eduardo A.
AU - Aidos H.
AU - Fred A.
PY - 2017
SP - 463
EP - 470
DO - 10.5220/0006195404630470