Retrieving Similar X-ray Images from Big Image Data using Radon Barcodes with Single Projections
Morteza Babaie, H. R. Tizhoosh, Shujin Zhu, M. E. Shiri
2017
Abstract
The idea of Radon barcodes (RBC) has been introduced recently. In this paper, we propose a content-based image retrieval approach for big datasets based on Radon barcodes. Our method (Single Projection Radon Barcode, or SP-RBC) uses only a few Radon single projections for each image as global features that can serve as a basis for weak learners. This is our most important contribution in this work, which improves the results of the RBC considerably. As a matter of fact, only one projection of an image, as short as a single SURF feature vector, can already achieve acceptable results. Nevertheless, using multiple projections in a long vector will not deliver anticipated improvements. To exploit the information inherent in each projection, our method uses the outcome of each projection separately and then applies more precise local search on the small subset of retrieved images. We have tested our method using IRMA 2009 dataset a with 14,400 x-ray images as part of imageCLEF initiative. Our approach leads to a substantial decrease in the error rate in comparison with other non-learning methods.
References
- Aundal, P. & Aasted, J., 1996. The Radon Transform Theory and Implementation Peter Toft Department of Mathematical Modelling Section for Digital Signal Processing Technical University of Denmark.
- Avni, U. et al., 2011. X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words. IEEE Transactions on Medical Imaging, 30(3), pp.733-746.
- Babenko, A. et al., 2014. Neural Codes for Image Retrieval. CoRR, abs/1404.1. Available at: http://arxiv.org/ abs/1404.1777.
- Bankar, R.T. et al., 2014. CBIR Representation In Terms of Rotation Invariant Texture using LBP Variance. International Journal of Emerging Science and Engineering (IJESE), (5), pp.75-77.
- Bay, H. et al., 2008. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110(3), pp.346-359.
- Beis, J.S. & Lowe, D.G., 1997. Shape indexing using approximate nearest-neighbour search in highdimensional spaces. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 1000-1006.
- Calonder, M. et al., 2010. BRIEF: Binary robust independent elementary features. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 778-792.
- Camlica, Z., Tizhoosh, H.R. & Khalvati, F., 2015. Medical image classification via SVM using LBP features from saliency-based folded data. Proceedings - 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA 2015, pp.128-132.
- Do, T. et al., 2010. Deluding Image Recognition in SIFTbased CBIR Systems. Analysis, (1), pp.7-12.
- Gevers, T. & Stokman, H., 2004. Robust Histogram Construction from Color Invariants for Object Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), pp.113-118.
- Gu, Y.J. & Sacchi, M., 2009. Radon transform methods and their applications in mapping mantle reflectivity structure. Surveys in Geophysics, 30(4-5), pp.327-354.
- Huang, W., Gao, Y. & Chan, K.L., 2010. A review of region-based image retrieval. Journal of Signal Processing Systems, 59(2), pp.143-161.
- Krig, S., 2012. Computer vision metrics,
- Kumar, A. et al., 2013. Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. Journal of digital imaging, 26(6), pp.1025-1039.
- Ledwich, L. & Williams, S., 2004. Reduced SIFT features for image retrieval and indoor localisation. Australian conference on robotics and automation.
- Lee, D.-J., Antani, S. & Long, L.R., 2003. Similarity measurement using polygon curve representation and fourier descriptors for shape-based vertebral image retrieval. In Medical Imaging 2003. pp. 1283-1291.
- Liu, X., Tizhoosh, H.R. & Kofman, J., 2016. Generating Binary Tags for Fast Medical Image Retrieval Based on Convolutional Nets and Radon Transform. International Joint Conference on Neural Networks, (Ijcnn). Available at: http://arxiv.org/abs/1604.04676.
- Lowe, D.G., 2004. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2), pp.91-110.
- Nanni, L., Lumini, A. & Brahnam, S., 2010. Local binary patterns variants as texture descriptors for medical image analysis. Artificial Intelligence in Medicine, 49(2), pp.117-125.
- Ojala, T., Pietikäinen, M. & Mäenpää, T., 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), pp.971-987.
- Radon, J., 1917. On determination of functions by their integral values along certain multiplicities. Ber. der Sachische Akademie der Wissenschaften Leipzig,(Germany), 69, pp.262-277.
- Rodríguez, F., Lecumberry, F. & Fernández, A., 2015. Pattern Recognition Applications and Methods. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9443, pp.196-205.
- Saha, S.K., Das, A.K. & Chanda, B., 2004. CBIR using perception based texture and colour measures. In Proceedings of the 17Th International Conference on Pattern Recognition, Vol 2. pp. 985-988.
- Shim, S., Choi, T. & Member, S., 2002. Edge color histogram for image retrieval. Science, pp.957-960.
- Subrahmanyam, M., Maheshwari, R.P. & Balasubramanian, R., 2012. Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking. Signal Processing, 92(6), pp.1467- 1479. Available at: http://dx.doi.org/10.1016/ j.sigpro.2011.12.005.
- Tizhoosh, H.R., 2015. Barcode annotations for medical image retrieval: A preliminary investigation. In Proceedings - International Conference on Image Processing, ICIP. pp. 818-822.
- Tizhoosh, H.R. et al., 2016. MinMax Radon Barcodes for Medical Image Retrieval. In To appear in proceedings of the 12th International Symposium on Visual Computing. Available at: http://arxiv.org/abs/ 1610.00318.
- Tommasi, T. et al., 2009. Overview of the CLEF 2009 medical image annotation track. In CEUR Workshop Proceedings.
- Tsai, H.-H. & Chiang, J.K., 2010. A Rotation Invariant Image Descriptor based on Radon Transform Yudong. In International Conference on New Trends in Information Science and Service Science (NISS). pp. 671-676.
- Velmurugan, K. & Baboo, S.S., 2011. Content-Based Image Retrieval using SURF and Colour Moments. Global Journal of Computer Science and Technology, 11(10), pp.1-4.
- Wan, J. et al., 2014. Deep Learning for Content-Based Image Retrieval. Proceedings of the ACM International Conference on Multimedia - MM 7814, pp.157-166.
- Wang, J.Z., 2001. Integrated Region-Based Image Retrieval, Norwell, MA, USA: Kluwer Academic Publishers.
- Yan, K. et al., 2016. CNN vs. SIFT for Image Retrieval: Alternative or Complementary? In Proceedings of the 2016 ACM on Multimedia Conference. MM 7816. New York, NY, USA: ACM, pp. 407-411. Available at: http://doi.acm.org/10.1145/2964284.2967252.
- Zhu, S. & Tizhoosh, H.R., 2016. Radon Features and Barcodes for Medical Image Retrieval via SVM. Available at: http://arxiv.org/abs/1604.04675.
- Zhu, S.Y. & Schaefer, G., 2004. Thermal Medical Image Retrieval by Moment Invariants. In J. M. Barreiro et al., eds. Biological and Medical Data Analysis: 5th International Symposium, ISBMDA 2004, Barcelona, Spain, November 18-19, 2004. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 182-187.
Paper Citation
in Harvard Style
Babaie M., Tizhoosh H., Zhu S. and Shiri M. (2017). Retrieving Similar X-ray Images from Big Image Data using Radon Barcodes with Single Projections . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 557-566. DOI: 10.5220/0006202105570566
in Bibtex Style
@conference{icpram17,
author={Morteza Babaie and H. R. Tizhoosh and Shujin Zhu and M. E. Shiri},
title={Retrieving Similar X-ray Images from Big Image Data using Radon Barcodes with Single Projections},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={557-566},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006202105570566},
isbn={978-989-758-222-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Retrieving Similar X-ray Images from Big Image Data using Radon Barcodes with Single Projections
SN - 978-989-758-222-6
AU - Babaie M.
AU - Tizhoosh H.
AU - Zhu S.
AU - Shiri M.
PY - 2017
SP - 557
EP - 566
DO - 10.5220/0006202105570566