Strategy Composition in Dynamic Games with Simultaneous Moves

Sujata Ghosh, Neethi Konar, R. Ramanujam

2017

Abstract

Sometimes, in dynamic games, it is useful to reason not only about the existence of strategies for players, but also about what these strategies are, and how players select and construct them. We study dynamic games with simultaneous moves, repeated normal form games and show that this reasoning can be carried out by considering a single game, and studying composition of ``local'' strategies. We study a propostional modal logic in which such reasoning is carried out, and present complete axiomatization of the valid formulas.

References

  1. A°gotnes, T. (2006). Action and knowledge in alternating time temporal logic. Synthese, 149(2):377-409.
  2. Alur, R., Henzinger, T. A., and Kupferman, O. (2002). Alternating-time temporal logic. Journal of the ACM, 49:672-713.
  3. Benthem, J. v. (2002). Extensive games as process models. Journal of Logic Language and Information, 11:289- 313.
  4. Benthem, J. v. (2007). In praise of strategies. In Eijck, J. v. and Verbrugge, R., editors, Foundations of Social Software, Studies in Logic, pages 283-317. College Publications.
  5. Bonanno, G. (2001). Branching time logic, perfect information games and backward induction. Games and Economic Behavior, 36(1):57-73.
  6. Broersen, J. and Herzig, A. (2015). Using STIT theory to talk about strategies. In van Benthem, J., Ghosh, S., and Verbrugge, R., editors, Models of Strategic Reasoning: Logics, Games and Communities, FoLLILNAI State-of-the-Art Survey, LNCS 8972, pages 137-173. Springer.
  7. Broersen, J. M. (2009). A stit-logic for extensive form group strategies. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, pages 484-487, Washington, DC, USA. IEEE Computer Society.
  8. Broersen, J. M. (2010). CTL.STIT: enhancing ATL to express important multi-agent system verification properties. In Proceedings of the ninth international joint conference on Autonomous agents and multiagent systems (AAMAS 2010), Toronto, Canada, pages 683- 690, New York, NY, USA. ACM.
  9. Bulling, N., Goranko, V., and Jamroga, W. (2015). Logics for reasoning about strategic abilities in multi-player games. In van Benthem, J., Ghosh, S., and Verbrugge, R., editors, Models of Strategic Reasoning: Logics, Games and Communities, FoLLI-LNAI State-of-theArt Survey, LNCS 8972, pages 93-136. Springer.
  10. Chatterjee, K., Henzinger, T. A., and Piterman, N. (2007). Strategy logic. In Proceedings of the 18th International Conference on Concurrency Theory, volume 4703 of Lecture Notes in Computer Science, pages 59-73. Springer.
  11. Ghosh, S. (2008). Strategies made explicit in dynamic game logic. In Proceedings of the Workshop on Logic and Intelligent Interaction, ESSLLI 2008, pages 74-81.
  12. Ghosh, S. and Ramanujam, R. (2012). Strategies in games: A logic-automata study. In Bezanishvili, N. and Goranko, V., editors, Lectures on Logic and Computation - ESSLLI 2010, ESSLLI 2011, Sel. Lecture Notes, pages 110-159. Springer.
  13. Harrenstein, P., van der Hoek, W., Meyer, J., and Witteven, C. (2003). A modal characterization of Nash equilibrium. Fundamenta Informaticae, 57(2-4):281-321.
  14. Horty, J. (2001). Agency and Deontic Logic. Oxford University Press.
  15. Osborne, M. and Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge, MA.
  16. Ramanujam, R. and Simon, S. (2008a). Dynamic logic on games with structured strategies. In Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR-08), pages 49-58. AAAI Press.
  17. Ramanujam, R. and Simon, S. (2008b). A logical structure for strategies. In Logic and the Foundations of Game and Decision Theory (LOFT 7), volume 3 of Texts in Logic and Games, pages 183-208. Amsterdam University Press.
  18. Rasmusen, E. (2007). Games and Information. Blackwell Publishing, Oxford, UK, 4 edition.
  19. van der Hoek, W., Jamroga, W., and Wooldridge, M. (2005). A logic for strategic reasoning. Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 157-164.
  20. Walther, D., van der Hoek, W., and Wooldridge, M. (2007). Alternating-time temporal logic with explicit strategies. In Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge (TARK2007), pages 269-278.
  21. Zermelo, E. (1913). Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels,. In Proceedings of the Fifth Congress Mathematicians, pages 501-504. Cambridge University Press.
  22. Zhang, D. and Thielscher, M. (2015). Representing and reasoning about game strategies. Journal of Philosophical Logic, 44(2):203-236.
Download


Paper Citation


in Harvard Style

Ghosh S., Konar N. and Ramanujam R. (2017). Strategy Composition in Dynamic Games with Simultaneous Moves . In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-220-2, pages 624-631. DOI: 10.5220/0006205106240631


in Bibtex Style

@conference{icaart17,
author={Sujata Ghosh and Neethi Konar and R. Ramanujam},
title={Strategy Composition in Dynamic Games with Simultaneous Moves},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2017},
pages={624-631},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006205106240631},
isbn={978-989-758-220-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Strategy Composition in Dynamic Games with Simultaneous Moves
SN - 978-989-758-220-2
AU - Ghosh S.
AU - Konar N.
AU - Ramanujam R.
PY - 2017
SP - 624
EP - 631
DO - 10.5220/0006205106240631