Perspectively Correct Construction of Virtual Views
Christian Fuchs, Dietrich Paulus
2017
Abstract
The computation of virtual camera views is a common requirement in the development of computer vision appliances. We present a method for the perspectively correct computation of configurable virtual cameras using depth data gained from stereo correspondences. It avoids unnatural warping of 3-D objects as caused by homography-based approaches. Our method is tested using different stereo datasets.
References
- Bay, H., Tuytelaars, T., and Gool, L. V. (2006). SURF : Speeded Up Robust Features. In European Conference on Computer Vision, pages 404-417.
- Einecke, N. and Eggert, J. (2015). A Multi-Block-Matching Approach for Stereo. In Intelligent Vehicles Symposium, pages 585-592.
- Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Computer Vision and Pattern Recognition, pages 3354-3361.
- Geyer, C. and Daniilidis, K. (2001). Catadioptric projective geometry. International Journal of Computer Vision, 45(3):223-243.
- Grimson, W. E. (1985). Computational experiments with a feature based stereo algorithm. Transactions on Pattern Analysis and Machine Intelligence, 7(1):17-34.
- Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University Press, New York, NY, USA, 2 edition.
- Hermann, S. and Klette, R. (2013). Iterative semi-global matching for robust driver assistance systems. In Asian Conference on Computer Vision, pages 465- 478.
- Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. Transactions on Pattern Analysis and Machine Intelligence, 30(2):328-341.
- Horaud, R. and Skordas, T. (1989). Stereo correspondence through feature grouping and maximal cliques. Transactions on Pattern Analysis and Machine Intelligence, 11(11):1168-1180.
- Laveau, S. and Faugeras, O. (1994). 3-D scene representation as a collection of images. International Conference on Pattern Recognition, 1.
- Lenz, R. K. and Tsai, R. Y. (1988). Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology. Transactions on Pattern Analysis and Machine Intelligence, 10(5):713-720.
- Li, S. and Hai, Y. (2011). Easy calibration of a blind-spotfree fisheye camera system using a scene of a parking space. Transactions on Intelligent Transportation Systems, 12(1):232-242.
- Liu, Y. C., Lin, K. Y., and Chen, Y. S. (2008). Bird's-eye view vision system for vehicle surrounding monitoring. LNCS, 4931:207-218.
- Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
- Pantilie, C. D. and Nedevschi, S. (2012). SORT-SGM: Subpixel Optimized Real-Time Semiglobal Matching for Intelligent Vehicles. Transactions on Vehicular Technology, 61(3):1032-1042.
- Pfeiffer, D., Gehrig, S., and Schneider, N. (2013). Exploiting the power of stereo confidences. Computer Vision and Pattern Recognition, pages 297-304.
- Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB - an efficient alternative to SIFT or SURF. In International Conference on Computer Vision, pages 2564-2571.
- Sato, T., Moro, A., Sugahara, A., Tasaki, T., Yamashita, A., and Asama, H. (2013). Spatio-temporal bird's-eye view images using multiple fish-eye cameras. International Symposium on System Integration, pages 753- 758.
- Scaramuzza, D. (2008). Ominidirectional vision: from calibration to robot estimation. PhD thesis, Citeseer.
- Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nes?ic, N., Wang, X., and Westling, P. (2014). High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth. German Conference on Pattern Recognition, 1(2):31-42.
- Scharwachter, T., Schuler, M., and Franke, U. (2014). Visual guard rail detection for advanced highway assistance systems. Intelligent Vehicles Symposium, pages 900-905.
- Shum, H.-Y. and Kang, S. B. (2000). A review of imagebased rendering techniques. Proc. SPIE Visual Communications and Image Processing, pages 2-13.
- Thomas, B., Chithambaran, R., Picard, Y., and Cougnard, C. (2011). Development of a cost effective bird's eye view parking assistance system. Recent Advances in Intelligent Computational Systems, pages 461-466.
- Tsai, R. Y. (1987). A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. Journal on Robotics and Automation, 3(4):323-344.
- Vincent, E. and Laganière, R. (2001). Detecting planar homographies in an image pair. International Symposium on Image and Signal Processing and Analysis, 0(2):182-187.
- Vogt, F., Krüger, S., Schmidt, J., Paulus, D., Niemann, H., Hohenberger, W., and Schick, C. H. (2004). Light fields for minimal invasive surgery using an endoscope positioning robot. Methods of information in medicine, 43(4):403-408.
- Zhang, Z. (2000). A flexible new technique for camera calibration. Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334.
- Zinger, S., Do, L., and De With, P. H. N. (2010). Freeviewpoint depth image based rendering. Journal of Visual Communication and Image Representation, 21(5- 6):533-541.
Paper Citation
in Harvard Style
Fuchs C. and Paulus D. (2017). Perspectively Correct Construction of Virtual Views . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 626-632. DOI: 10.5220/0006233106260632
in Bibtex Style
@conference{icpram17,
author={Christian Fuchs and Dietrich Paulus},
title={Perspectively Correct Construction of Virtual Views},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={626-632},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006233106260632},
isbn={978-989-758-222-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Perspectively Correct Construction of Virtual Views
SN - 978-989-758-222-6
AU - Fuchs C.
AU - Paulus D.
PY - 2017
SP - 626
EP - 632
DO - 10.5220/0006233106260632