Perspectively Correct Construction of Virtual Views

Christian Fuchs, Dietrich Paulus

2017

Abstract

The computation of virtual camera views is a common requirement in the development of computer vision appliances. We present a method for the perspectively correct computation of configurable virtual cameras using depth data gained from stereo correspondences. It avoids unnatural warping of 3-D objects as caused by homography-based approaches. Our method is tested using different stereo datasets.

References

  1. Bay, H., Tuytelaars, T., and Gool, L. V. (2006). SURF : Speeded Up Robust Features. In European Conference on Computer Vision, pages 404-417.
  2. Einecke, N. and Eggert, J. (2015). A Multi-Block-Matching Approach for Stereo. In Intelligent Vehicles Symposium, pages 585-592.
  3. Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Computer Vision and Pattern Recognition, pages 3354-3361.
  4. Geyer, C. and Daniilidis, K. (2001). Catadioptric projective geometry. International Journal of Computer Vision, 45(3):223-243.
  5. Grimson, W. E. (1985). Computational experiments with a feature based stereo algorithm. Transactions on Pattern Analysis and Machine Intelligence, 7(1):17-34.
  6. Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University Press, New York, NY, USA, 2 edition.
  7. Hermann, S. and Klette, R. (2013). Iterative semi-global matching for robust driver assistance systems. In Asian Conference on Computer Vision, pages 465- 478.
  8. Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. Transactions on Pattern Analysis and Machine Intelligence, 30(2):328-341.
  9. Horaud, R. and Skordas, T. (1989). Stereo correspondence through feature grouping and maximal cliques. Transactions on Pattern Analysis and Machine Intelligence, 11(11):1168-1180.
  10. Laveau, S. and Faugeras, O. (1994). 3-D scene representation as a collection of images. International Conference on Pattern Recognition, 1.
  11. Lenz, R. K. and Tsai, R. Y. (1988). Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology. Transactions on Pattern Analysis and Machine Intelligence, 10(5):713-720.
  12. Li, S. and Hai, Y. (2011). Easy calibration of a blind-spotfree fisheye camera system using a scene of a parking space. Transactions on Intelligent Transportation Systems, 12(1):232-242.
  13. Liu, Y. C., Lin, K. Y., and Chen, Y. S. (2008). Bird's-eye view vision system for vehicle surrounding monitoring. LNCS, 4931:207-218.
  14. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  15. Pantilie, C. D. and Nedevschi, S. (2012). SORT-SGM: Subpixel Optimized Real-Time Semiglobal Matching for Intelligent Vehicles. Transactions on Vehicular Technology, 61(3):1032-1042.
  16. Pfeiffer, D., Gehrig, S., and Schneider, N. (2013). Exploiting the power of stereo confidences. Computer Vision and Pattern Recognition, pages 297-304.
  17. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB - an efficient alternative to SIFT or SURF. In International Conference on Computer Vision, pages 2564-2571.
  18. Sato, T., Moro, A., Sugahara, A., Tasaki, T., Yamashita, A., and Asama, H. (2013). Spatio-temporal bird's-eye view images using multiple fish-eye cameras. International Symposium on System Integration, pages 753- 758.
  19. Scaramuzza, D. (2008). Ominidirectional vision: from calibration to robot estimation. PhD thesis, Citeseer.
  20. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nes?ic, N., Wang, X., and Westling, P. (2014). High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth. German Conference on Pattern Recognition, 1(2):31-42.
  21. Scharwachter, T., Schuler, M., and Franke, U. (2014). Visual guard rail detection for advanced highway assistance systems. Intelligent Vehicles Symposium, pages 900-905.
  22. Shum, H.-Y. and Kang, S. B. (2000). A review of imagebased rendering techniques. Proc. SPIE Visual Communications and Image Processing, pages 2-13.
  23. Thomas, B., Chithambaran, R., Picard, Y., and Cougnard, C. (2011). Development of a cost effective bird's eye view parking assistance system. Recent Advances in Intelligent Computational Systems, pages 461-466.
  24. Tsai, R. Y. (1987). A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. Journal on Robotics and Automation, 3(4):323-344.
  25. Vincent, E. and Laganière, R. (2001). Detecting planar homographies in an image pair. International Symposium on Image and Signal Processing and Analysis, 0(2):182-187.
  26. Vogt, F., Krüger, S., Schmidt, J., Paulus, D., Niemann, H., Hohenberger, W., and Schick, C. H. (2004). Light fields for minimal invasive surgery using an endoscope positioning robot. Methods of information in medicine, 43(4):403-408.
  27. Zhang, Z. (2000). A flexible new technique for camera calibration. Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334.
  28. Zinger, S., Do, L., and De With, P. H. N. (2010). Freeviewpoint depth image based rendering. Journal of Visual Communication and Image Representation, 21(5- 6):533-541.
Download


Paper Citation


in Harvard Style

Fuchs C. and Paulus D. (2017). Perspectively Correct Construction of Virtual Views . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 626-632. DOI: 10.5220/0006233106260632


in Bibtex Style

@conference{icpram17,
author={Christian Fuchs and Dietrich Paulus},
title={Perspectively Correct Construction of Virtual Views},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={626-632},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006233106260632},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Perspectively Correct Construction of Virtual Views
SN - 978-989-758-222-6
AU - Fuchs C.
AU - Paulus D.
PY - 2017
SP - 626
EP - 632
DO - 10.5220/0006233106260632