Prediction of Protein X-ray Crystallisation Trial Image Time-courses

B. M. Thamali Lekamge, Arcot Sowmya, Janet Newman

2017

Abstract

This paper presents an algorithm to predict the outcome of a protein x-ray crystallisation trial. Results obtained from classification of individual images in a time-course are used, along with random forests, to make a prediction of the time-course outcome. Experiments on multiple datasets show that the first 8 frames of each time-course are quite sufficient to predict the final outcome.

References

  1. Babcock, B., Datar, M. & Motwani, R. 2002. Sampling from a moving window over streaming data. Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. San Francisco, California: Society for Industrial and Applied Mathematics.
  2. Buchala, S. & Wilson, J. C. 2008. Improved classification of crystallization images using data fusion and multiple classifiers. Acta Crystallographica Section D, 64, 823- 833.
  3. Cumbaa, C. & Jurisica, I. 2005. Automatic classification and pattern discovery in high-throughput protein crystallization trials. J Struct Funct Genomics, 6, 195- 202.
  4. Dessau, M. A. & modis, Y. 2011. Protein crystallization for X-ray crystallography. JoVE (Journal of Visualized Experiments), e2285-e2285.
  5. Dietterich, T. G. 2002. Machine learning for sequential data: A review. Structural, syntactic, and statistical pattern recognition. Springer.
  6. Gama, J., SebastiĆ£o, R. & RODRIGUES, P. P. 2013. On evaluating stream learning algorithms. Machine Learning, 90, 317-346.
  7. Kotseruba Y, Cumbaa, C. A. & Jurisica, I. 2012. Highthroughput protein crystallization on the World Community Grid and the GPU. Journal of Physics: Conference Series, 341, 012027.
  8. Lekamge, B. M. T., Sowmya, A., Mele, K., Fazio, V. J. & Newman, J. 2013. Classification of protein crystallisation images using texture-based statistical features. AIP Conference Proceedings, 1559, 270-276.
  9. Lekamge, B. M. T., Sowmya, A. & Newman, J. 2016. Multi-view Learning for Classification of X-Ray Crystallography Images. Machine Learning and Data Mining in Pattern Recognition. Springer.
  10. Li, J., Maier, D., Tufte, K., Papadimos, V. & Tucker, P. A. 2005. No pane, no gain: efficient evaluation of slidingwindow aggregates over data streams. SIGMOD Rec., 34, 39-44.
  11. Mele, K., Lekamge, B. T., Fazio, V. J. & Newman, J. 2013. Using Time Courses To Enrich the Information Obtained from Images of Crystallization Trials. Crystal Growth & Design, 14, 261-269.
  12. Newman, J., Xu, J. & Willis, M. C. 2007. Initial evaluations of the reproducibility of vapor-diffusion crystallization. Acta Crystallographica Section D, 63, 826-832.
  13. Ng, J. T., Dekker, C., Reardon, P. & Von Delft, F. 2016. Lessons from ten years of crystallization experiments at the SGC. Acta Crystallographica Section D: Structural Biology, 72, 224-235.
  14. Vallotton, P., Sun, C., Lovell, D., Fazio, V. J. & Newman, J. 2010. DroplIT, an improved image analysis method for droplet identification in high-throughput crystallization trials. Journal of Applied Crystallography, 43, 1548-1552.
  15. Walker, C. G., Foadi, J. & Wilson, J. 2007. Classification of protein crystallization images using Fourier descriptors. Journal of Applied Crystallography, 40, 418-426.
  16. Watts, D., Cowtan, K. & Wilson, J. 2008. Automated classification of crystallization experiments using wavelets and statistical texture characterization techniques. Journal of Applied Crystallography, 41, 8- 17.
  17. Wilson, J. C. & Wilson, J. C. 2006. Automated Classification of Images from Crystallisation Experiments. In: Perner, P. & Perner, P. (eds.) Advances in Data Mining: Applications in Medicine, Web Mining, Marketing, Image and Signal Mining. Springer Berlin / Heidelberg.
  18. Yang, X., Chen, W., Zheng, Y. & Jiang, T. 2006. ImageBased Classification for Automating Protein Crystal Identification. In: Huang, D.-S., LI, K. & Irwin, G. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition. Springer Berlin Heidelberg.
Download


Paper Citation


in Harvard Style

Lekamge B., Sowmya A. and Newman J. (2017). Prediction of Protein X-ray Crystallisation Trial Image Time-courses . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 663-668. DOI: 10.5220/0006246506630668


in Bibtex Style

@conference{icpram17,
author={B. M. Thamali Lekamge and Arcot Sowmya and Janet Newman},
title={Prediction of Protein X-ray Crystallisation Trial Image Time-courses},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={663-668},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006246506630668},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Prediction of Protein X-ray Crystallisation Trial Image Time-courses
SN - 978-989-758-222-6
AU - Lekamge B.
AU - Sowmya A.
AU - Newman J.
PY - 2017
SP - 663
EP - 668
DO - 10.5220/0006246506630668