Brain Tumor Segmentation Based on Non Negative Matrix Factorization and Fuzzy Clustering

Ujjwal Baid, Shubham Talbar, Sanjay Talbar

2017

Abstract

The problem of computational brain tumor segmentation has attracted researchers over a decade because of its high clinical relevance and challenging nature. Automatic and accurate detection of brain tumor is one of the major areas of research in medical image processing which helps radiologists for precise treatment planning. Magnetic Resonance Imaging (MRI) is one of the widely used imaging modality for visualizing and assessing the brain anatomy and its functions in non-invasive manner. In this paper a novel approach for brain tumor segmentation based on Non-Negative Matrix Factorization(NMF) and Fuzzy clustering is proposed. Proposed algorithm is tested on BRATS 2012 training database of High Grade and Low Grade Glioma tumors with clinical and synthetic data of 80 patients. Various evaluation parameters like Dice index, Jaccard index, Sensitivity, Specificity are evaluated. Comparison of experimental results with other state of the art brain tumor segmentation methods demonstrate that proposed method outperforms existing segmentation techniques.

References

  1. Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., and Plemmons, R. J. (2007). Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 52(1):155-173.
  2. Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S. I. (2009). Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation.
  3. Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., and Yuille, A. (2008). Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Transactions on Medical Imaging, 27(5):629-640.
  4. Dera, D. (2015). Level Set Segmentation using NonNegative Matrix Factorization of Brain MRI Images.
  5. E. Geremia, B. M. and Ayache, N. (2012). Spatial decision forests for glioma segmentation in multi-channel mr images. Proc.MICCAI-BRATS, pages 14-18.
  6. Gordillo, N., Montseny, E., and Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, 31(8):1426-1438.
  7. Hamamci, A. and Unal, G. (2012). Multimodal brain tumor segmentation using the ”tumor-cut” method on the brats dataset. Proc.MICCAI-BRATS, pages 19-23.
  8. Hosseini-asl, E., Zurada, J. M., and El-baz, A. (2014). Lung Segmentation Based on Nonnegative Matrix Factorization Electrical and Computer Engineering Department , University of Louisville , Louisville , KY , USA . Bioengineering Department , University of Louisville , Louisville , KY , USA . Information Tech. (502):877-881.
  9. Kim, H. and Park, H. (2008). Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 30(2):713-730.
  10. Lee, D. D. and Seung, H. S. (2000). 401788a0. 401(October 1999):788-791.
  11. Menze, B. H., Leemput, K. V., Lashkari, D., Weber, M. A., Ayache, N., and Golland, P. (2012). Segmenting glioma in multi-modal images using a generative model for brain lesion segmentation. Proc.MICCAI-BRATS, pages 49-55.
  12. S. Bauer, T. Fejes, J. S. R. W. L. P. N. and Reyes, M. (2012). Segmentation of brain tumor images based on integrated hierarchical classification and regularization. Proc.MICCAI-BRATS, pages 10-13.
  13. Sandler, R. and Lindenbaum, M. (2011). Nonnegative matrix factorization with earth mover's distance metric for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1590-1602.
  14. T. Riklin Raviv, K. V. L. and Menze, B. H. (2012). Multimodal brain tumor segmentation via latent atlases. Proc.MICCAI-BRATS, pages 64-73.
  15. Tustison, N. and Gee, J. (2010). N4itk: Nick's n3 itk implementation for mri bias field correction.
  16. Xie, Y., Ho, J., and Vemuri, B. C. (2011). Nonnegative factorization of diffusion tensor images and its applications. LNCS, 6801:550-561.
  17. Zikic, D., Glocker, B., Konukoglu, E., Shotton, J., Criminisi, A., Ye, D. H., Demiralp, C., Thomas, O. M., Das, T., Jena, R., and Price, S. J. (2012). Context-sensitive classification forests for segmentation of brain tumor tissues. Proc.MICCAI-BRATS, pages 1-9.
Download


Paper Citation


in Harvard Style

Baid U., Talbar S. and Talbar S. (2017). Brain Tumor Segmentation Based on Non Negative Matrix Factorization and Fuzzy Clustering . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017) ISBN 978-989-758-215-8, pages 134-139. DOI: 10.5220/0006250701340139


in Bibtex Style

@conference{bioimaging17,
author={Ujjwal Baid and Shubham Talbar and Sanjay Talbar},
title={Brain Tumor Segmentation Based on Non Negative Matrix Factorization and Fuzzy Clustering},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017)},
year={2017},
pages={134-139},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006250701340139},
isbn={978-989-758-215-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017)
TI - Brain Tumor Segmentation Based on Non Negative Matrix Factorization and Fuzzy Clustering
SN - 978-989-758-215-8
AU - Baid U.
AU - Talbar S.
AU - Talbar S.
PY - 2017
SP - 134
EP - 139
DO - 10.5220/0006250701340139