3D Human Shapes Correspondence using the Principal Curvature Fields on a Local Surface Parametrization

Ilhem Sboui, Majdi Jribi, Faouzi Ghorbel

2017

Abstract

In this paper, we address the problem of the correspondence between 3D non-rigid human shapes. We propose a local surface description around the 3D human body extremities. It is based on the mean of principal curvature fields values on the intrinsic Darcyan parametrization constructed around these points. The similarity between the resulting descriptors is, then, measured in the sense of the L2 distance. Experiments on a several human objects from the TOSCA dataset confirm the accuracy of the proposed approach.

References

  1. Aalo, Y., Dubrovina, A., and Kimmel, R. (2013). Spectral generalized multi-dimensional scaling. pages 380- 392.
  2. Bronstein, A. and Bronstein, M. (2008). Regularized partial matching of rigid shapes. In European Conference on Computer Vision, pages 143-154. Springer.
  3. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2006). Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences of the United States of America, 103(5):1168-1172.
  4. Bronstein, A. M., Bronstein, M. M., Kimmel, R., Series, I. M. a. P., Hall, L., and E, C. S. S. (2009). A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching. pages 612-626.
  5. Cohen, L. and Kimmel, R. (1997). Global Minimum for Active Contour Models. International Journal on Computer Vision, 24(1):57-78.
  6. Gadacha, W. and Ghorbel, F. (2013). A stable and accurate multi-reference representation for surfaces of R3: Application to 3D faces description. IEEE International Conference on Automatic face and Gesture Recognition (FG2013), Shanghai- China.
  7. Jiang, L., Zhang, X., and Zhang, G. (2013). Partial shape matching of 3d models based on the laplacebeltrami operator eigenfunction. Journal of Multimedia, 8(6):655-661.
  8. Julien, T., Mohamed, D., and Jean-Philippe, V. (2006). Invariant highlevel reeb graphs of 3d polygonal meshes. International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), page 105?112.
  9. Kim, V. G., Lipman, Y., and Funkhouser, T. (2011). Blended intrinsic maps. ACM Transactions on Graphics, 30(4):1.
  10. Kimmel, R. and Sethian, J. a. (1998). Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences of the United States of America, 95(15):8431-8435.
  11. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. (2002). Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. International Workshop on Visualization and Mathematics.
  12. Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. (2010). One point isometric matching with the heat kernel. Eurographics Symposium on Geometry Processing, 29(5):1555-1564.
  13. Sun, J., Chen, X., and Funkhouser, T. A. (2010). Fuzzy geodesics and consistent sparse correspondences for: eformable shapes. 29(5):1535-1544.
  14. Taylor, J., Shotton, J., Sharp, T., and Fitzgibbon, A. (2012). The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. pages 103-110.
  15. Thompson, D. (1917). On growth and form. University press in Cambridge, Cambridge, MA.
  16. Van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. (2010). A Survey on Shape Correspondence. Computer Graphics Forum, xx:1-23.
  17. Wei, L., Huang, Q., Ceylan, D., Vouga, E., and Li, H. (2015). Dense human body correspondences using convolutional networks. arXiv preprint arXiv:1511.05904.
  18. Yaron, L. and Thomas, F. (2009). Möbius voting for surface correspondence. 28(3):72.
  19. Yusuf Sahilliog?lu, Y. Y. (2014). Multiple shape correspondence by dynamic programming. 33(7):121-130.
  20. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick, O., and Tagliasacchi, A. (2008). Deformation-driven shape correspondence. Eurographics Symposium on Geometry Processing, 27(5):1431-1439.
  21. Zheng, Y., Tai, C.-L., Zhang, E., and Xu, P. (2013). Pairwise harmonics for shape analysis. IEEE transactions on visualization and computer graphics, 19(7):1172- 1184.
Download


Paper Citation


in Harvard Style

Sboui I., Jribi M. and Ghorbel F. (2017). 3D Human Shapes Correspondence using the Principal Curvature Fields on a Local Surface Parametrization . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 631-636. DOI: 10.5220/0006266606310636


in Bibtex Style

@conference{visapp17,
author={Ilhem Sboui and Majdi Jribi and Faouzi Ghorbel},
title={3D Human Shapes Correspondence using the Principal Curvature Fields on a Local Surface Parametrization},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={631-636},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006266606310636},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - 3D Human Shapes Correspondence using the Principal Curvature Fields on a Local Surface Parametrization
SN - 978-989-758-225-7
AU - Sboui I.
AU - Jribi M.
AU - Ghorbel F.
PY - 2017
SP - 631
EP - 636
DO - 10.5220/0006266606310636