On Visual Stability and Visual Consistency for Progressive Visual Analytics

Marco Angelini, Giuseppe Santucci

2017

Abstract

The emerging field of Progressive Visual Analytics (PVA in what follows) deals with the objective of progressively create the final visualization through a series of intermediate visual results, affected by a degree of uncertainty and, in some cases, a non monotonic behaviour. According to that, it is a critical issue providing the user with no confusing visualization and that results in a novel point of view on stability and consistency. This position paper deals with the novel and challenging issues that PVA poses in term of visual stability and consistency, providing a preliminary framework in which this problem can be contextualized, measured, and formalized. In particular, the framework proposes a set of metrics, able to explore both data and visual changes; a preliminary case study demonstrates their applicability and advantages in adequately representing data changes in a visualization.

References

  1. Ahrens, J. P., Desai, N., McCormick, P. S., Martin, K., and Woodring, J. (2007). A modular extensible visualization system architecture for culled prioritized data streaming. In VDA'07, page 64950I. SPIE.
  2. Angelini, M. and Santucci, G. (2013). Modeling incremental visualizations. In Proc. of the EuroVis Workshop on Visual Analytics (EuroVA13), pages 13-17.
  3. Bederson, B. B., Shneiderman, B., and Wattenberg, M. (2002). Ordered and quantum treemaps: Making effective use of 2d space to display hierarchies. AcM Transactions on Graphics (TOG), 21(4):833-854.
  4. Bertini, E. and Santucci, G. (2006b). Visual quality metrics. In Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information visualization, pages 1-5. ACM.
  5. Cottam, J. A. (2011). Design and implementation of a stream-based visualization language. PhD thesis, Indiana University.
  6. Cottam, J. A., Lumsdaine, A., and Wang, P. (2014). Abstract rendering: Out-of-core rendering for information visualization. In Wong, P. C., Kao, D. L., Hao, M. C., and Chen, C., editors, Conference on Visualization and Data Analysis, page 90170K. SPIE.
  7. Fekete, J.-D. and Primet, R. (2016). Progressive analytics: A computation paradigm for exploratory data analysis. arXiv preprint arXiv:1607.05162.
  8. Fisher, D., Popov, I., Drucker, S., et al. (2012). Trust me, i'm partially right: incremental visualization lets analysts explore large datasets faster. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1673-1682. ACM.
  9. Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of machine learning research, 3(Mar):1289-1305.
  10. Frey, S., Sadlo, F., Ma, K.-L., and Ertl, T. (2014). Interactive progressive visualization with space-time error control. IEEE TVCG, 20(12):2397-2406.
  11. Glueck, M., Khan, A., and Wigdor, D. (2014). Dive in! Enabling progressive loading for real-time navigation of data visualizations. In CHI'14, pages 561-570. ACM.
  12. Harrison, L., Yang, F., Franconeri, S., and Chang, R. (2014). Ranking visualizations of correlation using weber's law. IEEE transactions on visualization and computer graphics, 20(12):1943-1952.
  13. Heer, J. and Robertson, G. (2007). Animated transitions in statistical data graphics. IEEE transactions on visualization and computer graphics, 13(6):1240-1247.
  14. Joy, K. I. (2009). Massive data visualization: A survey. In Möller, T., Hamann, B., and Russel, R. D., editors, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pages 285-302. Springer.
  15. Mulder, J. D., van Wijk, J. J., and van Liere, R. (1999). A survey of computational steering environments. Future Generation Computer Systems, 15(1):119-129.
  16. Piringer, H., Tominski, C., Muigg, P., and Berger, W. (2009). A multi-threading architecture to support interactive visual exploration. IEEE TVCG, 15(6):1113- 1120.
  17. Rensink, R. A. and Baldridge, G. (2010). The perception of correlation in scatterplots. In Computer Graphics Forum, volume 29, pages 1203-1210. Wiley Online Library.
  18. Rosenbaum, R. and Schumann, H. (2009). Progressive refinement: More than a means to overcome limited bandwidth. In VDA'09, page 72430I. SPIE.
  19. Schulz, H.-J., Angelini, M., Santucci, G., and Schumann, H. (2016). An enhanced visualization process model for incremental visualization. IEEE transactions on visualization and computer graphics, 22(7):1830- 1842.
  20. Stolper, C. D., Perer, A., and Gotz, D. (2014). Progressive visual analytics: User-driven visual exploration of inprogress analytics. IEEE TVCG, 20(12):1653-1662.
  21. Szafir, D. A., Haroz, S., Gleicher, M., and Franconeri, S. (2016). Four types of ensemble coding in data visualizations. Journal of Vision, 16(5):11.
  22. Tatu, A., Bak, P., Bertini, E., Keim, D., and Schneidewind, J. (2010). Visual quality metrics and human perception: an initial study on 2d projections of large multidimensional data. In Proceedings of the International Conference on Advanced Visual Interfaces, pages 49- 56. ACM.
  23. Tufte, E. R. and Graves-Morris, P. (1983). The visual display of quantitative information, volume 2. Graphics press Cheshire, CT.
  24. Turkay, C., Kaya, E., Balcisoy, S., and Hauser, H. (2017). Designing progressive and interactive analytics processes for high-dimensional data analysis. IEEE Transactions on Visualization and Computer Graphics, 23(1):131-140.
  25. Vo, H. T., Comba, J. L. D., Geveci, B., and Silva, C. T. (2011). Streaming-enabled parallel data flow framework in the Visualization ToolKit. IEEE Computing in Science and Engineering, 13(5):72-83.
  26. Ware, C. (2012). Information visualization: perception for design. Elsevier.
  27. Wong, P. C., Foote, H., Adams, D., Cowley, W., Leung, L. R., and Thomas, J. (2004). Visualizing data streams. In Kovalerchuk, B. and Schwing, J., editors, Visual and Spatial Analysis: Advances in Data Mining, Reasoning, and Problem Solving, pages 265- 291. Springer.
  28. Zheng, S., Song, R., and Wen, J.-R. (2007). Templateindependent news extraction based on visual consistency. In Proceedings of the National Conference on Artificial Intelligence , volume 22, page 1507. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
Download


Paper Citation


in Harvard Style

Angelini M. and Santucci G. (2017). On Visual Stability and Visual Consistency for Progressive Visual Analytics . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 335-341. DOI: 10.5220/0006269703350341


in Bibtex Style

@conference{ivapp17,
author={Marco Angelini and Giuseppe Santucci},
title={On Visual Stability and Visual Consistency for Progressive Visual Analytics},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},
year={2017},
pages={335-341},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006269703350341},
isbn={978-989-758-228-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - On Visual Stability and Visual Consistency for Progressive Visual Analytics
SN - 978-989-758-228-8
AU - Angelini M.
AU - Santucci G.
PY - 2017
SP - 335
EP - 341
DO - 10.5220/0006269703350341