Segmentation of the LV Wall with Trabeculations

Clément Beitone, Christophe Tilmant, Frédéric Chausse

2017

Abstract

The evaluation of cardiac functional parameters for heart disease diagnosis requires to have an accurate segmentation result. We propose a method to efficiently and reliably segment both the endocardial and the epicardial borders of the left ventricle. We use MR short axis images acquired in SSFP mode. Our framework combines a threshold-based approach to produce an estimation of the shape of the cardiac wall and a level set approach that refine it. We assessed our method on two databases built for two MICCAI challenges. Our results would have positioned us at the third place of the 2009 challenges.

References

  1. Aubert, G., Barlaud, M., Faugeras, O., and Jehan-Besson, S. (2003). Image segmentation using active contours: Calculus of variations or shape gradients? SIAM Journal on Applied Mathematics, 63(6):2128-2154.
  2. Beitone, C., Tilmant, C., and Chausse, F. (2015). Fully automatic deformable model integrating edge, texture and shape-application to cardiac images segmentation. In VISAPP (1), pages 517-522.
  3. Chan, T. F. and Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277.
  4. Feng, C., Li, C., Zhao, D., Davatzikos, C., and Litt, H. (2013). Segmentation of the left ventricle using distance regularized two-layer level set approach. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 477-484. Springer.
  5. Foulonneau, A., Charbonnier, P., and Heitz, F. (2003). Geometric shape priors for region-based active contours. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, volume 3, pages III-413. IEEE.
  6. Jolly, M. (2009). Fully automatic left ventricle segmentation in cardiac cine mr images using registration and minimum surfaces. The MIDAS Journal-Cardiac MR Left Ventricle Segmentation Challenge, 4.
  7. Lankton, S. and Tannenbaum, A. (2008). Localizing regionbased active contours. IEEE Transactions on Image Processing, 17(11):2029-2039.
  8. Ngo, T. A., Lu, Z., and Carneiro, G. (2016). Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Medical Image Analysis.
  9. Otsu, N. (1975). A threshold selection method from graylevel histograms. Automatica, 11(285-296):23-27.
  10. Petitjean, C. and Dacher, J.-N. (2011). A review of segmentation methods in short axis cardiac mr images. Medical image analysis, 15(2):169-184.
  11. Sethian, J. A. (1999). Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge university press.
Download


Paper Citation


in Harvard Style

Beitone C., Tilmant C. and Chausse F. (2017). Segmentation of the LV Wall with Trabeculations . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 301-305. DOI: 10.5220/0006270903010305


in Bibtex Style

@conference{visapp17,
author={Clément Beitone and Christophe Tilmant and Frédéric Chausse},
title={Segmentation of the LV Wall with Trabeculations},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={301-305},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006270903010305},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Segmentation of the LV Wall with Trabeculations
SN - 978-989-758-225-7
AU - Beitone C.
AU - Tilmant C.
AU - Chausse F.
PY - 2017
SP - 301
EP - 305
DO - 10.5220/0006270903010305