SIAS: Suicidal Intentions Alerting System
Georgios Domalis, Christos Makris, Pantelis Vikatos, Anastasios Papathanasiou, Efterpi Paraskevoulakou, Manos Sfakianakis
2017
Abstract
In this paper, we present an alerting system based on an efficient classification model for detecting suicidal people using natural language processing and data mining techniques. The model uses linguistic features which are derived from an analysis of handwritten and electronic messages/notes. The model was trained and validated with fully anonymised real data provided by the Cyber Crime Division of Greek Police as well as available suicidal notes from social media. The alerting system is intended as a prevention, management tool for automatic detection of suicidal intentions.
References
- Abboute, A., Boudjeriou, Y., Entringer, G., Azé, J., Bringay, S., and Poncelet, P. (2014). Mining Twitter for Suicide Prevention, pages 250-253. Springer International Publishing, Cham.
- Burnap, P., Colombo, W., and Scourfield, J. (2015). Machine classification and analysis of suicide-related communication on twitter. In Proceedings of the 26th ACM Conference on Hypertext & Social Media, HT 7815, pages 75-84, New York, NY, USA. ACM.
- Carrillo, J., Rojo, N., Sanchez-Bernardos, M., and Avia, M. (2001). Openness to experience and depression. European Journal of Psychological Assessment, 17(2):130.
- Celli, F. (2012). Unsupervised personality recognition for social network sites. In Proc. of Sixth International Conference on Digital Society. Citeseer.
- Colombo, G. B., Burnap, P., Hodorog, A., and Scourfield, J. (2016). Analysing the connectivity and communication of suicidal users on twitter. Computer Communications, 73, Part B:291 - 300. Online Social Networks.
- Graesser, A. C., McNamara, D. S., Louwerse, M. M., and Cai, Z. (2004). Coh-metrix: Analysis of text on cohesion and language. Behavior research methods, instruments, & computers, 36(2):193-202.
- John, O. P. and Srivastava, S. (1999). The big five trait taxonomy: History, measurement, and theoretical perspectives. Handbook of personality: Theory and research, 2(1999):102-138.
- Kotrla Topic, M., Perkovic Kovac?evic, M., and Mlac?ic, B. (2012). Relations of the big-five personality dimensions to autodestructive behavior in clinical and non-clinical adolescent populations. Croatian medical journal, 53(5):450-460.
- Lightman, E. J., McCarthy, P. M., Dufty, D. F., and McNamara, D. S. (2007). Using computational text analysis tools to compare the lyrics of suicidal and nonsuicidal songwriters. In Proceedings of the 29th Annual Meeting of the Cognitive Science Society, pages 1217-1222. Citeseer.
- Mairesse, F., Walker, M. A., Mehl, M. R., and Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Int. Res., 30(1):457-500.
- McCrae, R. R. and John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of personality, 60(2):175-215.
- Miller, G. A. (1995). WORDNET: a Lexical Database for English. Communications of the ACM, 38(11):39-41.
- Pennebaker, J. W., Francis, M. E., and Booth, R. J. (2001). Linguistic inquiry and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71:2001.
- Pestian, J., Nasrallah, H., Matykiewicz, P., Bennett, A., and Leenaars, A. (2010). Suicide Note Classification Using Natural Language Processing: A Content Analysis. Biomedical informatics insights, 2010(3):19-28.
- Rozanov, V. A. and Mid'ko, A. A. (2011). Personality patterns of suicide attempters: gender differences in ukraine. The Spanish journal of psychology, 14(02):693-700.
- Soltaninejad, A., Fathi-Ashtiani, A., Ahmadi, K., Mirsharafoddini, H. S., Nikmorad, A., and Pilevarzadeh, M. (2014). Personality factors underlying suicidal behavior among military youth. Iran Red Crescent Med J, 16(4):e12686.
- Stirman, S. W. and Pennebaker, J. W. (2001). Word Use in the Poetry of Suicidal and Nonsuicidal Poets. Psychosomatic Medicine, 63(4):517-522.
- Sueki, H. (2015). The association of suicide-related twitter use with suicidal behaviour: A cross-sectional study of young internet users in japan. Journal of Affective Disorders, 170:155 - 160.
- Thompson, P., Bryan, C., and Poulin, C. (2014). Predicting military and veteran suicide risk: Cultural aspects. In Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pages 1-6, Baltimore, Maryland, USA. Association for Computational Linguistics.
Paper Citation
in Harvard Style
Domalis G., Makris C., Vikatos P., Papathanasiou A., Paraskevoulakou E. and Sfakianakis M. (2017). SIAS: Suicidal Intentions Alerting System . In Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-758-246-2, pages 291-297. DOI: 10.5220/0006297402910297
in Bibtex Style
@conference{webist17,
author={Georgios Domalis and Christos Makris and Pantelis Vikatos and Anastasios Papathanasiou and Efterpi Paraskevoulakou and Manos Sfakianakis},
title={SIAS: Suicidal Intentions Alerting System},
booktitle={Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2017},
pages={291-297},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006297402910297},
isbn={978-989-758-246-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - SIAS: Suicidal Intentions Alerting System
SN - 978-989-758-246-2
AU - Domalis G.
AU - Makris C.
AU - Vikatos P.
AU - Papathanasiou A.
AU - Paraskevoulakou E.
AU - Sfakianakis M.
PY - 2017
SP - 291
EP - 297
DO - 10.5220/0006297402910297