A Semi-automatic Approach to Identify Business Process Elements in Natural Language Texts

Renato César Borges Ferreira, Lucinéia Heloisa Thom, Marcelo Fantinato

2017

Abstract

In organizations, business process modeling is very important to report, understand and automate processes. However, the documentation existent in organizations about such processes is mostly unstructured and difficult to be understood by analysts. The extracting of process models from textual descriptions may contribute to minimize the effort required in process modeling. In this context, this paper proposes a semi-automatic approach to identify process elements in natural language texts, which may include process descriptions. Therefore, based on the study of natural language processing, we defined a set of mapping rules to identify process elements in texts. In addition, we developed a prototype which is able to semi-automatically identify process elements in texts. Our evaluation shows promising results. The analyses of 56 texts revealed 91.92% accuracy and a case study showed that 93.33% of the participants agree with the mapping rules.

References

  1. Allen, J. (1995). Natural Language Understanding. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA.
  2. Blumberg, R. and Atre., S. (2003). The problem with unstructured data. DM Review.
  3. Brill, E. (1992). A simple rule-based part of speech tagger. In Proceedings of the Third Conference on Applied Natural Language Processing, ANLC 7892, pages 152- 155, Stroudsburg, PA, USA. Association for Computational Linguistics.
  4. Briscoe, T., Carroll, J., and Watson, R. (2006). The second release of the rasp system. In Proceedings of the COLING/ACL on Interactive Presentation Sessions, COLING-ACL 7806, pages 77-80, Stroudsburg, PA, USA. Association for Computational Linguistics.
  5. Choi, J. D., Tetreault, J. R., and Stent, A. (2015). It depends: Dependency parser comparison using A webbased evaluation tool. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 387-396.
  6. Chueng, A., Koliadis, G., and Ghose, A. (2007). Process discovery from model and text artefacts. 2007 IEEE Congress on Services, 00(undefined):167-174.
  7. de Kok, D. and Brouwer, H. (2011). Natural Language Processing for the Working Programmer.
  8. Dumas, M., Rosa, M. L., Mendling, J., and Reijers, H. A. (2013). Fundamentals of Business Process Management. Springer.
  9. Ferreira, R. C. B. and Thom, L. H. (2016). An approach to generate process-oriented text from natural language. page 77. XII Brazilian Symposium on Information Systems.
  10. Forbes, A. D. (1995). Classification-algorithm evaluation: Five performance measures based onconfusion matrices. Journal of Clinical Monitoring, 11(3):189-206.
  11. Friedrich, F., Mendling, J., and Puhlmann, F. (2011). Process model generation from natural language text. pages 482-496.
  12. Goncalves, J. C. A., Santoro, F. M., and Baia˜o, F. A. (2011). Let me tell you a story - on how to build process models. volume 17, pages 276-295. Journal of Universal Computer Science.
  13. Hearst, M. A. (1994). Multi-paragraph segmentation of expository text. In Proceedings of the 32Nd Annual Meeting on Association for Computational Linguistics, ACL 7894, pages 9-16, Stroudsburg, PA, USA. Association for Computational Linguistics.
  14. Hearst, M. A. (1997). Texttiling: Segmenting text into multi-paragraph subtopic passages. Comput. Linguist., 23(1):33-64.
  15. Heinonen, O. (1998). Optimal multi-paragraph text segmentation by dynamic programming. In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics - Volume 2, ACL 7898, pages 1484-1486, Stroudsburg, PA, USA. Association for Computational Linguistics.
  16. Herbst, J. (1999). An inductive approach to the acquisition and adaptation of workflow models. In Proceedings of the IJCAI'99 Workshop on Intelligent Workflow and Process Management: The New Frontier for AI in Business, pages 52-57.
  17. Hynes, G. and Bexley, J. (2003). Understandability of banks' annual reports. In 69th Association for Business Communication Annual Convention, pages 1-11, Albuquerque.
  18. Japkowicz, N. and Shah, M. (2011). Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, New York, NY, USA.
  19. Jiexun, L., Wang, Jiannan, H., Zhu, and Leon, J. (2010). A policy-based process mining framework: mining business policy texts for discovering process models. Information Systems and E-Business Management.
  20. Leopold, H. (2013). Natural language in business process models. Springer.
  21. Leopold, H., Mendling, J., and Polyvyanyy, A. (2014). Supporting process model validation through natural language generation. volume 40. IEEE Transactions on Software Engineering.
  22. Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA.
  23. Meitz, M., Leopold, H., and Mendling, J. (2013). An approach to support process model validation based on text generation. volume 33, pages 7-20.
  24. Mendling, J. (2013). Managing Structural and Textual Quality of Business Process Models, pages 100-111. Springer Berlin Heidelberg, Berlin, Heidelberg.
  25. Mendling, J., Reijers, H. A., and van der Aalst, W. M. P. (2010). Seven process modeling guidelines (7pmg). Inf. Softw. Technol., 52(2):127-136.
  26. Morris, J. and Hirst, G. (1991). Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Comput. Linguist., 17(1):21-48.
  27. Santoro, F. M., Goncalves, J. C. A., and Baiao, F. A. (2009). Business process mining from group stories. International Conference on Computer Supported Cooperative Work in Design, pages 161-166.
  28. Thom, L., Reichert, M., and Iochpe, C. (2009). Activity patterns in process-aware information systems: Basic concepts and empirical evidence. International Journal of Business Process Integration and Management (IJBPIM).
  29. Thom, L. H. (2012). Gerenciamento de Processos de Negócio e Aplicabilidade na Saúde e na Robótica. Biblioteca Digital Brasileira de Computac¸a˜o.
  30. Thom, L. H., REICHERT, M., IOCHPE, and C. OLIVEIRA, J. P. (2010). Why rigid process management technology hampers computerized support of healthcare processes. WIM - X Workshop de Informática Médica.
  31. van der Aa, H., Leopold, H., and Reijers, H. A. (2015). Detecting inconsistencies between process models and textual descriptions. In International Conference on Business Process Management, pages 90- 105. Springer.
  32. van der Aa, H., Leopold, H., and Reijers, H. A. (2016). Dealing with Behavioral Ambiguity in Textual Process Descriptions, pages 271-288. Springer International Publishing, Cham.
  33. Weske, M. (2007). Business Process Management: Concepts, Languages, Architectures. Springer-Verlag, Berlin.
  34. Wfmc, W. M. (2005). Wfmc: Process definition language: Xpdl 2.0. page 164.
Download


Paper Citation


in Harvard Style

Ferreira R., Thom L. and Fantinato M. (2017). A Semi-automatic Approach to Identify Business Process Elements in Natural Language Texts . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 3: ICEIS, ISBN 978-989-758-249-3, pages 250-261. DOI: 10.5220/0006305902500261


in Bibtex Style

@conference{iceis17,
author={Renato César Borges Ferreira and Lucinéia Heloisa Thom and Marcelo Fantinato},
title={A Semi-automatic Approach to Identify Business Process Elements in Natural Language Texts},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 3: ICEIS,},
year={2017},
pages={250-261},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006305902500261},
isbn={978-989-758-249-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 3: ICEIS,
TI - A Semi-automatic Approach to Identify Business Process Elements in Natural Language Texts
SN - 978-989-758-249-3
AU - Ferreira R.
AU - Thom L.
AU - Fantinato M.
PY - 2017
SP - 250
EP - 261
DO - 10.5220/0006305902500261