A Stochastic Approach for Optimizing Green Energy Consumption in Distributed Clouds

Benjamin Camus, Fanny Dufossé, Anne-Cécile Orgerie

2017

Abstract

The energy drawn by Cloud data centers is reaching worrying levels, thus inciting providers to install on-site green energy producers, such as photovoltaic panels. Considering distributed Clouds, workload managers need to geographically allocate virtual machines according to the green production in order not to waste energy. In this paper, we propose SAGITTA: a Stochastic Approach for Green consumption In disTributed daTA centers. We show that compared to the optimal solution, SAGITTA consumes 4% more brown energy, and wastes only 3.14% of the available green energy, while a traditional round-robin solution consumes 14.4% more energy overall than optimum, and wastes 28.83% of the available green energy.

References

  1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the Art of Virtualization. In ACM Symposium on Operating Systems Principles (SOSP), pages 164-177.
  2. Callau-Zori, M., Samoila, L., Orgerie, A.-C., and Pierre, G. (2016). An experiment-driven energy consumption model for virtual machine management systems. Technical Report 8844, Inria.
  3. Camus, B., Galtier, V., Caujolle, M., Chevrier, V., Vaubourg, J., Ciarletta, L., and Bourjot, C. (2016a). Hybrid Co-simulation of FMUs using DEV&DESS in MECSYCO. In Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative M&S Symposium.
  4. Camus, B., Paris, T., Vaubourg, J., Presse, Y., Bourjot, C., Ciarletta, L., and Chevrier, V. (2016b). MECSYCO: a Multi-agent DEVS Wrapping Platform for the Cosimulation of Complex Systems. Research report, LORIA, UMR 7503, Université de Lorraine, CNRS, Vandoeuvre-lès-Nancy ; Inria Nancy - Grand Est (Villers-lès-Nancy, France).
  5. Deng, W., Liu, F., Jin, H., Li, B., and Li, D. (2014). Harnessing renewable energy in cloud datacenters: opportunities and challenges. IEEE Network, 28(1):48-55.
  6. Fan, X., Weber, W.-D., and Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. In ACM International symposium on Computer architecture (ISCA), pages 13-23.
  7. Figuerola, S., Lemay, M., Reijs, V., Savoie, M., and St. Arnaud, B. (2009). Converged Optical Network Infrastructures in Support of Future Internet and Grid Services Using IaaS to Reduce GHG Emissions. Journal of Lightwave Technology, 27(12):1941-1946.
  8. Greenpeace (2011). How dirty is your data? Greenpeace report.
  9. Katz, R. H. (2009). Tech Titans Building Boom. IEEE Spectrum, 46(2):40-54.
  10. Koomey, J. (2011). Growth in Data Center Electricity Use 2005 to 2010. Analytics Press.
  11. Li, Y., Orgerie, A.-C., and Menaud, J.-M. (2015). Opportunistic Scheduling in Clouds Partially Powered by Green Energy. In IEEE International Conference on Green Computing and Communications (GreenCom).
  12. Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., and Rajkumar, R. (2002). Critical power slope: understanding the runtime effects of frequency scaling. In ACM International conference on Supercomputing (ICS), pages 35-44.
  13. Orgerie, A.-C., Dias de Assunc¸a˜o, M., and Lefèvre, L. (2014). A Survey on Techniques for Improving the Energy Efficiency of Large-Scale Distributed Systems. ACM Computing Surveys (CSUR), 46(4):47:1- 47:31.
  14. Rais, I., Orgerie, A.-C., and Quinson, M. (2016). Impact of Shutdown Techniques for Energy-Efficient Cloud Data Centers. In International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), Granada, Spain.
  15. Ren, S., He, Y., and Xu, F. (2012). Provably-Efficient Job Scheduling for Energy and Fairness in Geographically Distributed Data Centers. In IEEE International Conference on Distributed Computing Systems (ICDCS), pages 22-31.
  16. Shehabi, A., Smith, S., Horner, N., Azevedo, I., Brown, R., Koomey, J., Masanet, E., Sartor, D., Herrlin, M., and Lintner, W. (2016). United States Data Center Energy Usage Report. Technical report, Lawrence Berkeley National Laboratory.
  17. Snowdon, D., Ruocco, S., and Heiser, G. (2005). Power Management and Dynamic Voltage Scaling: Myths and Facts. In Workshop on Power Aware Real-time Computing.
  18. Talaber, R., Brey, T., and Lamers, L. (2009). Using Virtualization to Improve Data Center Efficiency. Technical report, The Green Grid.
  19. Tighe, M., Keller, G., Bauer, M., and Lutfiyya, H. (2012). DCSim: A data centre simulation tool for evaluating dynamic virtualized resource management. In Workshop on Systems Virtualization Management (colocated with CNSM), pages 385-392.
  20. Tripathi, R., Vignesh, S., and Tamarapalli, V. (2016). Optimizing Green Energy, Cost, and Availability in Distributed Data Centers. IEEE Communications Letters.
  21. Wang, D., Ren, C., Sivasubramaniam, A., Urgaonkar, B., and Fathy, H. (2012). Energy storage in datacenters: What, where, and how much? In ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, pages 187-198.
  22. Wang, L., Tao, J., Kunze, M., Castellanos, A., Kramer, D., and Karl, W. (2008). Scientific Cloud Computing: Early Definition and Experience. In IEEE International Conference on High Performance Computing and Communications (HPCC), pages 825-830.
  23. Zeigler, B., Praehofer, H., and Kim, T. (2000). Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.
Download


Paper Citation


in Harvard Style

Camus B., Dufossé F. and Orgerie A. (2017). A Stochastic Approach for Optimizing Green Energy Consumption in Distributed Clouds . In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-241-7, pages 47-59. DOI: 10.5220/0006306500470059


in Bibtex Style

@conference{smartgreens17,
author={Benjamin Camus and Fanny Dufossé and Anne-Cécile Orgerie},
title={A Stochastic Approach for Optimizing Green Energy Consumption in Distributed Clouds},
booktitle={Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2017},
pages={47-59},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006306500470059},
isbn={978-989-758-241-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - A Stochastic Approach for Optimizing Green Energy Consumption in Distributed Clouds
SN - 978-989-758-241-7
AU - Camus B.
AU - Dufossé F.
AU - Orgerie A.
PY - 2017
SP - 47
EP - 59
DO - 10.5220/0006306500470059