Estimating Reference Evapotranspiration using Data Mining Prediction Models and Feature Selection

Hinessa Dantas Caminha, Ticiana Coelho da Silva, Atslands Rego da Rocha, Sílvio Carlos R. Vieira Lima

2017

Abstract

Since the irrigated agriculture is the most water-consuming sector in Brazil, it is a challenge to use water in a sustainable way. Evapotranspiration is the combination process of transferring moisture from the earth to the atmosphere by evaporation and transpiration from plants. By estimating this rate of loss, farmers can efficiently manage the crop water requirement and how much water is available. In this work, we propose prediction models, which can estimate the evapotranspiration based on climatic data collected by an automatic meteorological station. Climatic data are multidimensional, therefore by reducing the data dimensionality, then irrelevant, redundant or non-significant data can be removed from the results. In this way, we consider in the proposed solution to apply feature selection techniques before generating the prediction model. Thus, we can estimate the reference evapotranspiration according to the collected climatic variables. The experiments results concluded that models with high accuracy can be generated by M5' algorithm with feature selection techniques.

References

  1. (2015). Irrigation Sector Reform. FAO. Corporative Website.
  2. (2015). Relatório de Conjuntura dos Recursos Hídricos no Brasil 2014. Ageˆncia Nacional de Íguas.
  3. (2016). PC200W 4.4.2. Campbell Scientific, Inc. Corporative Website.
  4. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, Rome, 300(9):D05109.
  5. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3):37.
  6. Frizzone, J. A., de Souza, F., and Lima, S. C. R. V. (2013). Manejo da irrigac¸ a˜o: Quando, Quanto e Como Irrigar. INOVAGRI.
  7. Garces-Restrepo, C., Vermillion, D., and Muoz, G. (2007). Irrigation management transfer: Worldwide efforts and results.
  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10-18.
  9. Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato.
  10. Hall, M. A. (2000). Correlation-based feature selection of discrete and numeric class machine learning.
  11. Hendrawan, Y. and Murase, H. (2011). Neural-intelligent water drops algorithm to select relevant textural features for developing precision irrigation system using machine vision. Computers and Electronics in Agriculture, 77(2):214-228.
  12. Karegowda, A. G., Manjunath, A., and Jayaram, M. (2010). Comparative study of attribute selection using gain ratio and correlation based feature selection. International Journal of Information Technology and Knowledge Management, 2(2):271-277.
  13. Liu, H. and Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491-502.
  14. Rahimikhoob, A. (2014). Comparison between m5 model tree and neural networks for estimating reference evapotranspiration in an arid environment. Water resources management, 28(3):657-669.
  15. Sawalkar, N. and Dixit, P. (2015). Evapotranspiration modeling using m5 model tree.
  16. Wang, Y. and Witten, I. H. (1996). Induction of model trees for predicting continuous classes. Working paper series.
  17. Xavier, F., Tanaka, A. K., and Amorim, F. A. B. (2016). Application of data science techniques in evapotranspiration estimation.
Download


Paper Citation


in Harvard Style

Dantas Caminha H., Coelho da Silva T., Rego da Rocha A. and R. Vieira Lima S. (2017). Estimating Reference Evapotranspiration using Data Mining Prediction Models and Feature Selection . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 272-279. DOI: 10.5220/0006327202720279


in Bibtex Style

@conference{iceis17,
author={Hinessa Dantas Caminha and Ticiana Coelho da Silva and Atslands Rego da Rocha and Sílvio Carlos R. Vieira Lima},
title={Estimating Reference Evapotranspiration using Data Mining Prediction Models and Feature Selection},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2017},
pages={272-279},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006327202720279},
isbn={978-989-758-247-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Estimating Reference Evapotranspiration using Data Mining Prediction Models and Feature Selection
SN - 978-989-758-247-9
AU - Dantas Caminha H.
AU - Coelho da Silva T.
AU - Rego da Rocha A.
AU - R. Vieira Lima S.
PY - 2017
SP - 272
EP - 279
DO - 10.5220/0006327202720279