Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures

Igor Peterson Oliveira Santos, Juli Kelle Góis Costa, Methanias Colaço Júnior, André Vinícius R. P. Nascimento

2017

Abstract

Business Intelligence (BI) relies on Data Warehouse (DW), a historical data repository designed to support the decision making process. Despite the potential benefits of a DW, data quality issues prevent users from realizing the benefits of a BI environment and Data Analytics. Problems related to data quality can arise in any stage of the ETL (Extract, Transform and Load) process, especially in the loading phase. This Paper presents an approach to automate the selection and execution of previously identified test cases for loading procedures in BI environments based on DW. To verify and validate the approach, a unit tests framework was developed. The overall goal is achieve efficiency improvement. The specific aim is reduce test effort and, consequently, promote test activities in data warehousing process. A controlled experiment evaluation in the industry carried out to investigate the adequacy of the proposed method against a generic framework for DW procedures development. Constructed specifically for database application tests, DbUnit was the generic framework chosen for the experiment by convenience of the programmers. The experiment's results show that our approach clearly reduces test effort when compared with execution of test cases using a generic framework.

References

  1. Basili, V. and Weiss, D. (1984), A Methodology for Collecting Valid Software Engineering Data, In: IEEE Transactions On Software Engineering, v.10 (3): 728- 738, November.
  2. Colaço Jr. (2004), Projetando sistemas de apoio à decisão baseados em Data Warehouse, 1st ed., Rio de Janeiro: Axcel Books.
  3. Cooper, R. and Arbuckle, S. (2002), How to thoroughly test a Data Warehouse, Proceedings of STAREAST, Orlando.
  4. Costa, J. K. G., Santos, I. P. O., Nascimento, A. V. R. P., Colaço Jr, M (2015), Experimentação na Indústria para Aumento da Efetividade da Construção de Procedimentos ETL em um Ambiente de Business Intelligence. SBSI 2015, May 26-29, Goiânia, Goiás, Brazil.
  5. DbUnit, (2016), http://DbUnit.sourceforge.net/
  6. Deshpande, K. (2013), Model Based Testing of Data Warehouse, IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3.
  7. Elgamal, N., Elbastawissy, A. and Galol-edeen, G. (2013), Data Warehouse Testing, EDBT/ICDT 7813, Genoa, Italy.
  8. Golfarelli, M. and Rizzi, S. A. (2009), Comprehensive Approach to Data Warehouse Testing, ACM 12th International Workshop on Data Warehousing and OLAP (DOLAP 7809), Hong Kong, China.
  9. Inmon, W. H. (2005), Building the Data Warehouse. 4th ed., Indianapolis, Indiana: Wiley Publishing Inc.
  10. Kimball, R. (2004), The Data Warehouse ETL Toolkit. 1st ed., Wiley India (P) Ltd.
  11. Kimball, R. and Ross, M. (2002), The Data Warehouse toolkit: The complete Guide to Dimensional Modeling, 2nd ed., John Wiley and Sons, Inc.
  12. Kimball, R., Ross, R. M. and Thomthwaite, W. (2008), The Data Warehouse lifecycle toolkit, 2nd. ed., Indianapolis, Indiana: Wiley Publishing Inc.
  13. Krawatzeck, R.; Tetzner, A. and Dinter, B. (2015), An Evaluation Of Open Source Unit Testing Tools Suitable For Data Warehouse Testing, The 19th Pacific Asia Conference on Information Systems (PACIS).
  14. Myers, G. J., Badgett, T. and Sandler, C. (2012), The Art Of Software Testing, 3rd ed., New Jersey: Wiley.
  15. Orne, M. T. (1962), Sobre a psicologia social da experiência psicológica: Com referência particular para exigir características e suas implicações.
  16. Pressman, R. S. (2011), Engenharia de software: Uma abordagem profissional, 7th ed., São Paulo: AMGH Editora Ltda.
  17. Ranjit S. and Kawaljeet, S. (2010), A Descriptive Classification of Causes of Data Quality Problems in Data Warehousing, 7 v. IJCSI International Journal Of Computer Science Issues.
  18. Santos, I. P. O., Costa, J. K. G., Nascimento, A. V. R. P., Colaço Jr, M., (2012), Desevolvimento e Avaliação de uma Ferramenta de Geração Automática de Código para Ambientes de Apoio à Decisão. In: XII WTICG, XII ERBASE (2012).
  19. Santos, I. P. O., Nascimento, A. V. R. P., Costa, J. K. G., Colaço Jr., M., Pereira, W. P. (2016), Experimentation in the Industry for Automation of Unit Testing in a Business Intelligence Environment. SEKE the 28th International Conference on Software Engineering and Knowledge Engineering. California, USA.
  20. Santos, V. and Belo, O. (2011), No Need to Type Slowly Changing Dimensions, IADIS International Conference Information Systems.
  21. Singh, R. and Singh, K. (2010), A Descriptive Classification of Causes of Data Quality Problems in Data Warehouse. IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 2.
  22. Sommerville, I. (2011), Engenharia de Software. 9th ed., São Paulo: Pearson.
  23. SPSS, IBM Software, (1968), Statistical Package for the Social Sciences, http://goo.gl/eXfcT3.
  24. Wohlin, C., et al. (2000), Experimentation in Software Engineering: An introduction. USA: Kluwer Academic Publishers.
Download


Paper Citation


in Harvard Style

Oliveira Santos I., Góis Costa J., Colaço Júnior M. and R. P. Nascimento A. (2017). Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 304-311. DOI: 10.5220/0006337503040311


in Bibtex Style

@conference{iceis17,
author={Igor Peterson Oliveira Santos and Juli Kelle Góis Costa and Methanias Colaço Júnior and André Vinícius R. P. Nascimento},
title={Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2017},
pages={304-311},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006337503040311},
isbn={978-989-758-247-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures
SN - 978-989-758-247-9
AU - Oliveira Santos I.
AU - Góis Costa J.
AU - Colaço Júnior M.
AU - R. P. Nascimento A.
PY - 2017
SP - 304
EP - 311
DO - 10.5220/0006337503040311