Semantic Segmentation in Red Relief Image Map by UX-Net
Tomoya Komiyama, Kazuhiro Hotta, Kazuo Oda, Satomi Kakuta, Mikako Sano
2018
Abstract
This paper proposes a semantic segmentation method in Red Relief Image Map which a kind of aerial laser image. We modify the U-Net by adding the paths between convolutional layer and deconvolutional layer with different resolution. By using the feature maps obtained at different layers, the segmentation accuracy is improved. We compare the segmentation accuracy of the proposed UX-Net with the original U-net. Our proposed method improved class-average accuracy in comparison with the U-Net.
DownloadPaper Citation
in Harvard Style
Komiyama T., Hotta K., Oda K., Kakuta S. and Sano M. (2018). Semantic Segmentation in Red Relief Image Map by UX-Net.In Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-276-9, pages 597-602. DOI: 10.5220/0006716805970602
in Bibtex Style
@conference{icpram18,
author={Tomoya Komiyama and Kazuhiro Hotta and Kazuo Oda and Satomi Kakuta and Mikako Sano},
title={Semantic Segmentation in Red Relief Image Map by UX-Net},
booktitle={Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2018},
pages={597-602},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006716805970602},
isbn={978-989-758-276-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Semantic Segmentation in Red Relief Image Map by UX-Net
SN - 978-989-758-276-9
AU - Komiyama T.
AU - Hotta K.
AU - Oda K.
AU - Kakuta S.
AU - Sano M.
PY - 2018
SP - 597
EP - 602
DO - 10.5220/0006716805970602