Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph
F. F. Hadiputra, D. R. Silaban, T. K. Maryati
2019
Abstract
Let π(πΊ) be a chromatic number of vertex coloring of a graph G. A bijection π:πΈβ{1,2,3,β¦,|πΈ(πΊ)|} is called local antimagic vertex coloring if for any adjacent vertices do not share the same weight, where the weight of a vertex in πΊ is the sum of the label of edges incident to it. We denote the minimum number of distinct weight of vertices in πΊ so that the graph πΊ admits a local antimagic vertex coloring as πππ(πΊ). In this study, we established the missing value of πππ for a case in wheel graph and πππ for helm graph.
DownloadPaper Citation
in Harvard Style
Hadiputra F., Silaban D. and Maryati T. (2019). Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph. In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics - Volume 1: IMC-SciMath, ISBN 978-989-758-556-2, pages 185-189. DOI: 10.5220/0010138400002775
in Bibtex Style
@conference{imc-scimath19,
author={F. F. Hadiputra and D. R. Silaban and T. K. Maryati},
title={Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph},
booktitle={Proceedings of the 1st International MIPAnet Conference on Science and Mathematics - Volume 1: IMC-SciMath,},
year={2019},
pages={185-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010138400002775},
isbn={978-989-758-556-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International MIPAnet Conference on Science and Mathematics - Volume 1: IMC-SciMath,
TI - Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph
SN - 978-989-758-556-2
AU - Hadiputra F.
AU - Silaban D.
AU - Maryati T.
PY - 2019
SP - 185
EP - 189
DO - 10.5220/0010138400002775