Stochastic Phase Estimation and Unwrapping

Mara Pistellato, Filippo Bergamasco, Andrea Albarelli, Luca Cosmo, Andrea Gasparetto, Andrea Torsello

2019

Abstract

Phase-shift is one of the most effective techniques in 3D structured-light scanning for its accuracy and noise resilience. However, the periodic nature of the signal causes a spatial ambiguity when the fringe periods are shorter than the projector resolution. To solve this, many techniques exploit multiple combined signals to unwrap the phases and thus recovering a unique consistent code. In this paper, we study the phase estimation and unwrapping problem in a stochastic context. Assuming the acquired fringe signal to be affected by additive white Gaussian noise, we start by modelling each estimated phase as a zero-mean Wrapped Normal distribution with variance σ̄2. Then, our contributions are twofolds. First, we show how to recover the best projector code given multiple phase observations by means of a ML estimation over the combined fringe distributions. Second, we exploit the Cramér-Rao bounds to relate the phase variance σ̄2 to the variance of the observed signal, that can be easily estimated online during the fringe acquisition. An extensive set of experiments demonstrate that our approach outperforms other methods in terms of code recovery accuracy and ratio of faulty unwrappings.

Download


Paper Citation


in Harvard Style

Pistellato M., Bergamasco F., Albarelli A., Cosmo L., Gasparetto A. and Torsello A. (2019). Stochastic Phase Estimation and Unwrapping.In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-351-3, pages 200-209. DOI: 10.5220/0007389402000209


in Bibtex Style

@conference{icpram19,
author={Mara Pistellato and Filippo Bergamasco and Andrea Albarelli and Luca Cosmo and Andrea Gasparetto and Andrea Torsello},
title={Stochastic Phase Estimation and Unwrapping},
booktitle={Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2019},
pages={200-209},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007389402000209},
isbn={978-989-758-351-3},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Stochastic Phase Estimation and Unwrapping
SN - 978-989-758-351-3
AU - Pistellato M.
AU - Bergamasco F.
AU - Albarelli A.
AU - Cosmo L.
AU - Gasparetto A.
AU - Torsello A.
PY - 2019
SP - 200
EP - 209
DO - 10.5220/0007389402000209