Automatic Nuclei Detection in Histopathological Images based on Convolutional Neural Networks
Roaa Safi Abed Alah, Gokhan Bilgin, Gokhan Bilgin, Abdulkadir Albayrak, Abdulkadir Albayrak
2019
Abstract
Analysis of cells in histopathological images with conventional manual methods is relatively expensive and time-consuming work for pathologists. Recently, computer aided and facilitated researches for the diagnostic algorithms have obtained a high significance to assist the pathologists to extract cellular structures. In this paper, we are compering the conventional fuzzy c-means (FCM) clustering method with the proposed automated detection system based on Tiny-Convolutional Neural Network (Tiny-CNN) to detect center of nucleus in histopathological images, Also, in this study, we are tried to find center of nucleus by combined unsupervised method (FCM) with supervised method (Tiny-CNN). Briefly, First step, nuclei centers are detected with FCM algorithm which is applied as a clustering-segmentation method to perform segmentation of nucleus cellular and nucleus non-cellular structure to find the correct center of nuclei. Second step, the deep learning method is used to detect center of nucleus based automated method. Afterward, combined each of these individual methods to evaluate our model for extracting the center of nucleus on two different data set the University of California Santa Barbara’s UCSB-58 data set and data set University of Warwick’s CRC-100 data set.
DownloadPaper Citation
in Harvard Style
Alah R., Bilgin G. and Albayrak A. (2019). Automatic Nuclei Detection in Histopathological Images based on Convolutional Neural Networks. In Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019) - Volume 4: BIOSIGNALS; ISBN 978-989-758-353-7, SciTePress, pages 193-200. DOI: 10.5220/0007484301930200
in Bibtex Style
@conference{biosignals19,
author={Roaa Safi Abed Alah and Gokhan Bilgin and Abdulkadir Albayrak},
title={Automatic Nuclei Detection in Histopathological Images based on Convolutional Neural Networks},
booktitle={Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019) - Volume 4: BIOSIGNALS},
year={2019},
pages={193-200},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007484301930200},
isbn={978-989-758-353-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019) - Volume 4: BIOSIGNALS
TI - Automatic Nuclei Detection in Histopathological Images based on Convolutional Neural Networks
SN - 978-989-758-353-7
AU - Alah R.
AU - Bilgin G.
AU - Albayrak A.
PY - 2019
SP - 193
EP - 200
DO - 10.5220/0007484301930200
PB - SciTePress