Chemical Named Entity Recognition with Deep Contextualized Neural Embeddings
Zainab Awan, Tim Kahlke, Peter J. Ralph, Paul J. Kennedy
2019
Abstract
Chemical named entity recognition (ChemNER) is a preliminary step in chemical information extraction pipelines. ChemNER has been approached using rule-based, dictionary-based, and feature-engineered based machine learning, and more recently also deep learning based methods. Traditional word-embeddings, like word2vec and Glove, are inherently problematic because they ignore the context in which an entity appears. Contextualized embeddings called embedded language models (ELMo) have been recently introduced to represent contextual information of a word in its embedding space. In this work, we quantify the impact of contextualized embeddings for ChemNER by using Bi-LSTM-CRF (bidirectional long short term memory networks - conditional random fields) networks. We benchmarked our approach using four well-known corpora for chemical named entity recognition. Our results show that incorporation of ELMo results in statistically significant improvements in F1 score in all of the tested datasets.
DownloadPaper Citation
in Harvard Style
Awan Z., Kahlke T., Ralph P. and Kennedy P. (2019). Chemical Named Entity Recognition with Deep Contextualized Neural Embeddings. In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019) - Volume 1: KDIR; ISBN 978-989-758-382-7, SciTePress, pages 135-144. DOI: 10.5220/0008163501350144
in Bibtex Style
@conference{kdir19,
author={Zainab Awan and Tim Kahlke and Peter J. Ralph and Paul J. Kennedy},
title={Chemical Named Entity Recognition with Deep Contextualized Neural Embeddings},
booktitle={Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019) - Volume 1: KDIR},
year={2019},
pages={135-144},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0008163501350144},
isbn={978-989-758-382-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019) - Volume 1: KDIR
TI - Chemical Named Entity Recognition with Deep Contextualized Neural Embeddings
SN - 978-989-758-382-7
AU - Awan Z.
AU - Kahlke T.
AU - Ralph P.
AU - Kennedy P.
PY - 2019
SP - 135
EP - 144
DO - 10.5220/0008163501350144
PB - SciTePress