Modeling Concept Drift in the Context of Discrete Bayesian Networks
Hatim Alsuwat, Emad Alsuwat, Marco Valtorta, John Rose, Csilla Farkas
2019
Abstract
Concept drift is a significant challenge that greatly influences the accuracy and reliability of machine learning models. There is, therefore, a need to detect concept drift in order to ensure the validity of learned models. In this research, we study the issue of concept drift in the context of discrete Bayesian networks. We propose a probabilistic graphical model framework to explicitly detect the presence of concept drift using latent variables. We employ latent variables to model real concept drift and uncertainty drift over time. For modeling real concept drift, we propose to monitor the mean of the distribution of the latent variable over time. For modeling uncertainty drift, we suggest to monitor the change in beliefs of the latent variable over time, i.e., we monitor the maximum value that the probability density function of the distribution takes over time. We implement our proposed framework and present our empirical results using two of the most commonly used Bayesian networks in Bayesian experiments, namely the Burglary-Earthquake Network and the Chest Clinic network.
DownloadPaper Citation
in Harvard Style
Alsuwat H., Alsuwat E., Valtorta M., Rose J. and Farkas C. (2019). Modeling Concept Drift in the Context of Discrete Bayesian Networks. In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019) - Volume 1: KDIR; ISBN 978-989-758-382-7, SciTePress, pages 214-224. DOI: 10.5220/0008384702140224
in Bibtex Style
@conference{kdir19,
author={Hatim Alsuwat and Emad Alsuwat and Marco Valtorta and John Rose and Csilla Farkas},
title={Modeling Concept Drift in the Context of Discrete Bayesian Networks},
booktitle={Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019) - Volume 1: KDIR},
year={2019},
pages={214-224},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0008384702140224},
isbn={978-989-758-382-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019) - Volume 1: KDIR
TI - Modeling Concept Drift in the Context of Discrete Bayesian Networks
SN - 978-989-758-382-7
AU - Alsuwat H.
AU - Alsuwat E.
AU - Valtorta M.
AU - Rose J.
AU - Farkas C.
PY - 2019
SP - 214
EP - 224
DO - 10.5220/0008384702140224
PB - SciTePress