Parameter Sensitivity Patterns in the Plant Propagation Algorithm
Marleen de Jonge, Daan van den Berg
2020
Abstract
The parameter sensitivity of the plant propagation algorithm’s performance, defined as the maximum impact on attained objective values, is studied on function optimization. The number of offspring and population size are varied across a large range of values and tested on multidimensional benchmark test functions. As the dimensionality of a function increases, the parametric sensitivity shows one of three distinct different patterns: sublinear increase, superlinear increase or an up-down phase transition. We conjecture that the difference in algorithmic behaviour might be due to the intrinsic mathematical properties of the functions themselves.
DownloadPaper Citation
in Harvard Style
de Jonge M. and van den Berg D. (2020). Parameter Sensitivity Patterns in the Plant Propagation Algorithm. In Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020) - Volume 1: ECTA; ISBN 978-989-758-475-6, SciTePress, pages 92-99. DOI: 10.5220/0010134300920099
in Bibtex Style
@conference{ecta20,
author={Marleen de Jonge and Daan van den Berg},
title={Parameter Sensitivity Patterns in the Plant Propagation Algorithm},
booktitle={Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020) - Volume 1: ECTA},
year={2020},
pages={92-99},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010134300920099},
isbn={978-989-758-475-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020) - Volume 1: ECTA
TI - Parameter Sensitivity Patterns in the Plant Propagation Algorithm
SN - 978-989-758-475-6
AU - de Jonge M.
AU - van den Berg D.
PY - 2020
SP - 92
EP - 99
DO - 10.5220/0010134300920099
PB - SciTePress