Clustering of Voice Pathologies based on Sustained Voice Parameters
Alessa Anjos de Oliveira, Alessa Anjos de Oliveira, Maria E. Dajer, Paula O. Fernandes, Paula O. Fernandes, João Paulo Teixeira, João Paulo Teixeira, João Paulo Teixeira
2020
Abstract
Signal processing techniques can be used to extract information that contribute to the detection of laryngeal disorders. The goal of this paper is to perform a statistical analysis through the boxplot tool from 832 voice signals of individuals with different laryngeal pathologies from the Saarbrücken Voice Database in order to create relevant groups, making feasible an automatic identification of these dysfunctions. Jitter, Shimmer, HNR, NHR and Autocorrelation features were compared between several groups of voice pathologies/conditions, resulting in three identified clusters.
DownloadPaper Citation
in Harvard Style
Anjos de Oliveira A., Dajer M., Fernandes P. and Teixeira J. (2020). Clustering of Voice Pathologies based on Sustained Voice Parameters. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) - Volume 4: BIOSIGNALS; ISBN 978-989-758-398-8, SciTePress, pages 280-287. DOI: 10.5220/0009146202800287
in Bibtex Style
@conference{biosignals20,
author={Alessa Anjos de Oliveira and Maria E. Dajer and Paula O. Fernandes and João Paulo Teixeira},
title={Clustering of Voice Pathologies based on Sustained Voice Parameters},
booktitle={Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) - Volume 4: BIOSIGNALS},
year={2020},
pages={280-287},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0009146202800287},
isbn={978-989-758-398-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) - Volume 4: BIOSIGNALS
TI - Clustering of Voice Pathologies based on Sustained Voice Parameters
SN - 978-989-758-398-8
AU - Anjos de Oliveira A.
AU - Dajer M.
AU - Fernandes P.
AU - Teixeira J.
PY - 2020
SP - 280
EP - 287
DO - 10.5220/0009146202800287
PB - SciTePress