Device-based Image Matching with Similarity Learning by Convolutional Neural Networks that Exploit the Underlying Camera Sensor Pattern Noise

Guru Bennabhaktula, Enrique Alegre, Dimka Karastoyanova, George Azzopardi

2020

Abstract

One of the challenging problems in digital image forensics is the capability to identify images that are captured by the same camera device. This knowledge can help forensic experts in gathering intelligence about suspects by analyzing digital images. In this paper, we propose a two-part network to quantify the likelihood that a given pair of images have the same source camera, and we evaluated it on the benchmark Dresden data set containing 1851 images from 31 different cameras. To the best of our knowledge, we are the first ones addressing the challenge of device-based image matching. Though the proposed approach is not yet forensics ready, our experiments show that this direction is worth pursuing, achieving at this moment 85 percent accuracy. This ongoing work is part of the EU-funded project 4NSEEK concerned with forensics against child sexual abuse.

Download


Paper Citation


in Harvard Style

Bennabhaktula G., Alegre E., Karastoyanova D. and Azzopardi G. (2020). Device-based Image Matching with Similarity Learning by Convolutional Neural Networks that Exploit the Underlying Camera Sensor Pattern Noise. In Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-397-1, pages 578-584. DOI: 10.5220/0009155505780584


in Bibtex Style

@conference{icpram20,
author={Guru Bennabhaktula and Enrique Alegre and Dimka Karastoyanova and George Azzopardi},
title={Device-based Image Matching with Similarity Learning by Convolutional Neural Networks that Exploit the Underlying Camera Sensor Pattern Noise},
booktitle={Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2020},
pages={578-584},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0009155505780584},
isbn={978-989-758-397-1},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Device-based Image Matching with Similarity Learning by Convolutional Neural Networks that Exploit the Underlying Camera Sensor Pattern Noise
SN - 978-989-758-397-1
AU - Bennabhaktula G.
AU - Alegre E.
AU - Karastoyanova D.
AU - Azzopardi G.
PY - 2020
SP - 578
EP - 584
DO - 10.5220/0009155505780584