Upper Limb Anthropometric Parameter Estimation through Convolutional Neural Network Systems and Image Processing

Andres Guatibonza, Leonardo Solaque, Alexandra Velasco, Lina Peñuela

2021

Abstract

Anthropometry is a versatile tool for evaluating the human body proportions. This tool allows the orientation of public health policies and clinical decisions. But in order to optimize the obtaining of anthropometric measurements, different methods have been developed to determine anthropometry automatically using artificial intelligence. In this work, we apply a convolutional neural network to estimate the upper limb’s anthropometric parameters. With this aim, we use the OpenPose estimator system and image processing for segmentation with U-NET from a complete uncalibrated body image. The parameter estimation system is performed with total body images from 4 different volunteers. The system accuracy is evaluated through a global average percentage of 71% from the comparison between measured values and estimated values. A fine-tuning of algorithm hyper-parameters will be used in future works to improve the estimation.

Download


Paper Citation


in Harvard Style

Guatibonza A., Solaque L., Velasco A. and Peñuela L. (2021). Upper Limb Anthropometric Parameter Estimation through Convolutional Neural Network Systems and Image Processing. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-522-7, pages 583-591. DOI: 10.5220/0010566505830591


in Bibtex Style

@conference{icinco21,
author={Andres Guatibonza and Leonardo Solaque and Alexandra Velasco and Lina Peñuela},
title={Upper Limb Anthropometric Parameter Estimation through Convolutional Neural Network Systems and Image Processing},
booktitle={Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2021},
pages={583-591},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010566505830591},
isbn={978-989-758-522-7},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Upper Limb Anthropometric Parameter Estimation through Convolutional Neural Network Systems and Image Processing
SN - 978-989-758-522-7
AU - Guatibonza A.
AU - Solaque L.
AU - Velasco A.
AU - Peñuela L.
PY - 2021
SP - 583
EP - 591
DO - 10.5220/0010566505830591