Robustness of Contraction Metrics Computed by Radial Basis Functions

Peter Giesl, Sigurdur Hafstein, Iman Mehrabinezhad

2021

Abstract

We study contraction metrics computed for dynamical systems with periodic orbits using generalized interpolation with radial basis functions. The robustness of the metric with respect to perturbations of the system is proved and demonstrated for two examples from the literature.

Download


Paper Citation


in Harvard Style

Giesl P., Hafstein S. and Mehrabinezhad I. (2021). Robustness of Contraction Metrics Computed by Radial Basis Functions. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-522-7, pages 592-599. DOI: 10.5220/0010572905920599


in Bibtex Style

@conference{icinco21,
author={Peter Giesl and Sigurdur Hafstein and Iman Mehrabinezhad},
title={Robustness of Contraction Metrics Computed by Radial Basis Functions},
booktitle={Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2021},
pages={592-599},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010572905920599},
isbn={978-989-758-522-7},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Robustness of Contraction Metrics Computed by Radial Basis Functions
SN - 978-989-758-522-7
AU - Giesl P.
AU - Hafstein S.
AU - Mehrabinezhad I.
PY - 2021
SP - 592
EP - 599
DO - 10.5220/0010572905920599