Robustness of Contraction Metrics Computed by Radial Basis Functions
Peter Giesl, Sigurdur Hafstein, Iman Mehrabinezhad
2021
Abstract
We study contraction metrics computed for dynamical systems with periodic orbits using generalized interpolation with radial basis functions. The robustness of the metric with respect to perturbations of the system is proved and demonstrated for two examples from the literature.
DownloadPaper Citation
in Harvard Style
Giesl P., Hafstein S. and Mehrabinezhad I. (2021). Robustness of Contraction Metrics Computed by Radial Basis Functions. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-522-7, pages 592-599. DOI: 10.5220/0010572905920599
in Bibtex Style
@conference{icinco21,
author={Peter Giesl and Sigurdur Hafstein and Iman Mehrabinezhad},
title={Robustness of Contraction Metrics Computed by Radial Basis Functions},
booktitle={Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2021},
pages={592-599},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010572905920599},
isbn={978-989-758-522-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Robustness of Contraction Metrics Computed by Radial Basis Functions
SN - 978-989-758-522-7
AU - Giesl P.
AU - Hafstein S.
AU - Mehrabinezhad I.
PY - 2021
SP - 592
EP - 599
DO - 10.5220/0010572905920599