AutoCNN-MSCD: An Autodesigned CNN Framework for Detecting Multi-skin Cancer Diseases over Dermoscopic Images

Robert Brodin, Palawat Busaranuvong, Chun-Kit Ngan

2022

Abstract

We enhance and customize the automatically evolving genetic-based CNN (AE-CNN) framework to develop an auto-designed CNN (AutoCNN) pipeline to dynamically generate an optimal CNN model to assist physicians in detecting multi-skin cancer diseases (MSCD) over dermatoscopic images. Specifically, the contributions of this work are three-fold: (1) integrate the pre-processing module into the existing AE-CNN framework to sanitize and diversify dermatoscopic images; (2) enhance the evaluation algorithm of the framework to improve the model selection process by using the k-fold cross-validation; and (3) conduct the experimental study to present the accuracy results that the CNN model constructed by AutoCNN outperforms the model by AE-CNN to detect and classify MSCD.

Download


Paper Citation


in Harvard Style

Brodin R., Busaranuvong P. and Ngan C. (2022). AutoCNN-MSCD: An Autodesigned CNN Framework for Detecting Multi-skin Cancer Diseases over Dermoscopic Images. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP; ISBN 978-989-758-555-5, SciTePress, pages 607-615. DOI: 10.5220/0010893400003124


in Bibtex Style

@conference{visapp22,
author={Robert Brodin and Palawat Busaranuvong and Chun-Kit Ngan},
title={AutoCNN-MSCD: An Autodesigned CNN Framework for Detecting Multi-skin Cancer Diseases over Dermoscopic Images},
booktitle={Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP},
year={2022},
pages={607-615},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010893400003124},
isbn={978-989-758-555-5},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP
TI - AutoCNN-MSCD: An Autodesigned CNN Framework for Detecting Multi-skin Cancer Diseases over Dermoscopic Images
SN - 978-989-758-555-5
AU - Brodin R.
AU - Busaranuvong P.
AU - Ngan C.
PY - 2022
SP - 607
EP - 615
DO - 10.5220/0010893400003124
PB - SciTePress