A New Way to Characterize Learning Datasets
Célina Treuillier, Célina Treuillier, Anne Boyer, Anne Boyer
2022
Abstract
The student’s interaction with Virtual Learning Environments (VLE) produces a large amount of data, known as learning traces, which is commonly used by the Learning Analytics (LA) domain to enhance the learning experience. Digital learning systems are generally based on the processing of these traces and must be able to adapt to different student profiles. However, the information provided in raw traces is diversified and can’t be directly used for the profile identification task: it requires defining learning indicators pedagogically relevant, and measurable directly from learning traces, and then classify learners profiles according to these indicators. The paper’s main contribution remains on the characterization of LA datasets both in terms of groups sizes and observed digital behaviors. It answers the lack of clearly stated information for LA systems developers, who need to ensure that their algorithms do not introduce bias, especially by disfavoring specific categories of students, which would only worsen existing inequalities in the student population. To go further, the embodiment of these identified profiles by translating them into learner personas also participates in the improvement of the explicability of LA outcomes by providing easy-to-interpret descriptions of students. These personas consist of fictitious representative student profiles, expressing different needs and learning objectives to which the LA systems must respond.
DownloadPaper Citation
in Harvard Style
Treuillier C. and Boyer A. (2022). A New Way to Characterize Learning Datasets. In Proceedings of the 14th International Conference on Computer Supported Education - Volume 2: CSEDU, ISBN 978-989-758-562-3, pages 35-44. DOI: 10.5220/0010982500003182
in Bibtex Style
@conference{csedu22,
author={Célina Treuillier and Anne Boyer},
title={A New Way to Characterize Learning Datasets},
booktitle={Proceedings of the 14th International Conference on Computer Supported Education - Volume 2: CSEDU,},
year={2022},
pages={35-44},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010982500003182},
isbn={978-989-758-562-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 14th International Conference on Computer Supported Education - Volume 2: CSEDU,
TI - A New Way to Characterize Learning Datasets
SN - 978-989-758-562-3
AU - Treuillier C.
AU - Boyer A.
PY - 2022
SP - 35
EP - 44
DO - 10.5220/0010982500003182