Rethinking Image-Based Table Recognition Using Weakly Supervised Methods
Nam Ly, Atsuhiro Takasu, Phuc Nguyen, Hideaki Takeda
2023
Abstract
Most of the previous methods for table recognition rely on training datasets containing many richly annotated table images. Detailed table image annotation, e.g., cell or text bounding box annotation, however, is costly and often subjective. In this paper, we propose a weakly supervised model named WSTabNet for table recognition that relies only on HTML (or LaTeX) code-level annotations of table images. The proposed model consists of three main parts: an encoder for feature extraction, a structure decoder for generating table structure, and a cell decoder for predicting the content of each cell in the table. Our system is trained end-to-end by stochastic gradient descent algorithms, requiring only table images and their ground-truth HTML (or LaTeX) representations. To facilitate table recognition with deep learning, we create and release WikiTableSet, the largest publicly available image-based table recognition dataset built from Wikipedia. WikiTableSet contains nearly 4 million English table images, 590K Japanese table images, and 640k French table images with corresponding HTML representation and cell bounding boxes. The extensive experiments on WikiTableSet and two large-scale datasets: FinTabNet and PubTabNet demonstrate that the proposed weakly supervised model achieves better, or similar accuracies compared to the state-of-the-art models on all benchmark datasets.
DownloadPaper Citation
in Harvard Style
Ly N., Takasu A., Nguyen P. and Takeda H. (2023). Rethinking Image-Based Table Recognition Using Weakly Supervised Methods. In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-626-2, pages 872-880. DOI: 10.5220/0011682600003411
in Bibtex Style
@conference{icpram23,
author={Nam Ly and Atsuhiro Takasu and Phuc Nguyen and Hideaki Takeda},
title={Rethinking Image-Based Table Recognition Using Weakly Supervised Methods},
booktitle={Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2023},
pages={872-880},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011682600003411},
isbn={978-989-758-626-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Rethinking Image-Based Table Recognition Using Weakly Supervised Methods
SN - 978-989-758-626-2
AU - Ly N.
AU - Takasu A.
AU - Nguyen P.
AU - Takeda H.
PY - 2023
SP - 872
EP - 880
DO - 10.5220/0011682600003411