On the Effectiveness of Re-Identification Attacks and Local Differential Privacy-Based Solutions for Smart Meter Data
Zeynep Kaya, M. Emre Gursoy
2023
Abstract
Smart meters are increasing the ability to collect, store and share households’ energy consumption data. On the other hand, the availability of such data raises novel privacy concerns. Although the data can be de-identified or pseudonymized, a critical question remains: How unique are households’ energy consumptions, and is it possible to re-identify households based on partial or imperfect knowledge of their consumption? In this paper, we aim to answer this question, and make two main contributions. First, we develop an adversary model in which an adversary who observes a pseudonymized dataset and knows a limited number of consumption readings from a target household aims to infer which record in the dataset corresponds to the target. We characterize the adversary’s knowledge by two parameters: number of known readings and precision of readings. Using experiments conducted on three real-world datasets, we demonstrate that the adversary can indeed achieve high inference rates. Second, we propose a local differential privacy (LDP) based solution for protecting the privacy of energy consumption data. We evaluate the impact of our LDP solution on three datasets using two utility metrics, three LDP protocols, and various parameter settings. Results show that our solution can attain high accuracy and low estimation error under strong privacy guarantees.
DownloadPaper Citation
in Harvard Style
Kaya Z. and Gursoy M. (2023). On the Effectiveness of Re-Identification Attacks and Local Differential Privacy-Based Solutions for Smart Meter Data. In Proceedings of the 20th International Conference on Security and Cryptography - Volume 1: SECRYPT; ISBN 978-989-758-666-8, SciTePress, pages 111-122. DOI: 10.5220/0012083300003555
in Bibtex Style
@conference{secrypt23,
author={Zeynep Kaya and M. Emre Gursoy},
title={On the Effectiveness of Re-Identification Attacks and Local Differential Privacy-Based Solutions for Smart Meter Data},
booktitle={Proceedings of the 20th International Conference on Security and Cryptography - Volume 1: SECRYPT},
year={2023},
pages={111-122},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012083300003555},
isbn={978-989-758-666-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 20th International Conference on Security and Cryptography - Volume 1: SECRYPT
TI - On the Effectiveness of Re-Identification Attacks and Local Differential Privacy-Based Solutions for Smart Meter Data
SN - 978-989-758-666-8
AU - Kaya Z.
AU - Gursoy M.
PY - 2023
SP - 111
EP - 122
DO - 10.5220/0012083300003555
PB - SciTePress