A Clustering-Based Approach for Adaptive Control Applied to a Hybrid Electric Vehicle
Rian Beck, Sudarsan Venkatesan, Joram Meskens, Jeroen Willems, Edward Kikken, Bruno Depraetere
2023
Abstract
In this paper we present an approach to adapt the parameters of controllers during operation. It is targeted at industrial adoption, relying on controllers of the same type currently in use, but adjusting their gains at run-time based on varying system and / or environment conditions. As the key contribution of this paper we present a method to discover what condition variations warrant a control adaptation for cases where this is not known up front. The goal is not to achieve a better performance than other adaptive control schemes, but to provide a different method of designing or deciding how to build adaptation logic. To achieve this we use data-driven methods to, in an offline preprocessing step: (I) derive features that quantify system / environment variations, (II) optimize the control parameters for the distinct feature values, (III) search for clusters in the multi-dimensional space of both these features and control parameters, looking for sets of similar features as well as control parameters to be used. Once a set of clusters is defined, an online adaptive controller is then synthesized by (I) building a classifier to determine which cluster the currently observed conditions belong to, and (II) selecting the optimal control parameters for that cluster. This paper provides a first illustration of the method, without theoretical analysis, on an example case of energy management for a hybrid electrical vehicle, for which an Equivalent Consumption Minimization Strategy controller is built whose parameters are adjusted as the detected cluster changes. The results show an increase in energy-efficiency of the adaptive control method over the non-adaptive one in a variety of scenarios.
DownloadPaper Citation
in Harvard Style
Beck R., Venkatesan S., Meskens J., Willems J., Kikken E. and Depraetere B. (2023). A Clustering-Based Approach for Adaptive Control Applied to a Hybrid Electric Vehicle. In Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO; ISBN 978-989-758-670-5, SciTePress, pages 162-171. DOI: 10.5220/0012171100003543
in Bibtex Style
@conference{icinco23,
author={Rian Beck and Sudarsan Venkatesan and Joram Meskens and Jeroen Willems and Edward Kikken and Bruno Depraetere},
title={A Clustering-Based Approach for Adaptive Control Applied to a Hybrid Electric Vehicle},
booktitle={Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO},
year={2023},
pages={162-171},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012171100003543},
isbn={978-989-758-670-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO
TI - A Clustering-Based Approach for Adaptive Control Applied to a Hybrid Electric Vehicle
SN - 978-989-758-670-5
AU - Beck R.
AU - Venkatesan S.
AU - Meskens J.
AU - Willems J.
AU - Kikken E.
AU - Depraetere B.
PY - 2023
SP - 162
EP - 171
DO - 10.5220/0012171100003543
PB - SciTePress