Measuring and Ranking Bipolarity via Orthopairs
Zoltán Csajbók
2023
Abstract
Orthopairs, i.e., disjoint sets, are reasonable means to represent bipolar information. Bipolarity has different models; we use the well-known Dubois-Prade typology. Of course, bipolarity can also carry uncertainty. In this paper, we investigate mainly the bipolarity of type II. In Pawlak’s rough set theory, this bipolarity type, with its uncertainty, can be modeled naturally. The “positive” and “negative” sets form an orthopair whose two sets can be approximated by rough sets separately. Rough sets represented by nested sets can be considered an interval set structure. With the help of counting measure, interval numbers can be assigned to the nested sets. Then, relying on interval arithmetic, taking into account the uncertain nature of bipolarity, the degree of bipolarity can be measured, and the positive and negative sets ranked.
DownloadPaper Citation
in Harvard Style
Csajbók Z. (2023). Measuring and Ranking Bipolarity via Orthopairs. In Proceedings of the 15th International Joint Conference on Computational Intelligence - Volume 1: FCTA; ISBN 978-989-758-674-3, SciTePress, pages 338-347. DOI: 10.5220/0012180800003595
in Bibtex Style
@conference{fcta23,
author={Zoltán Csajbók},
title={Measuring and Ranking Bipolarity via Orthopairs},
booktitle={Proceedings of the 15th International Joint Conference on Computational Intelligence - Volume 1: FCTA},
year={2023},
pages={338-347},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012180800003595},
isbn={978-989-758-674-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 15th International Joint Conference on Computational Intelligence - Volume 1: FCTA
TI - Measuring and Ranking Bipolarity via Orthopairs
SN - 978-989-758-674-3
AU - Csajbók Z.
PY - 2023
SP - 338
EP - 347
DO - 10.5220/0012180800003595
PB - SciTePress