Synthesizing Classifiers from Prior Knowledge
G. J. Burghouts, K. Schutte, M. Kruithof, W. Huizinga, F. Ruis, H. Kuijf
2024
Abstract
Various good methods have been proposed for either zero-shot or few-shot learning, but these are commonly unsuited for both; whereas in practice one often starts without labels and some might become available later. We propose a method that naturally ties zero- and few-shot learning together. We initiate a zero-shot model from prior knowledge about the classes, by recombining the weights from a classification head via a linear reconstruction that is sparse to avoid overfitting. Our mapping is an explicit transfer of knowledge from known to new classes, hence it can be inspected and visualized, which is impossible with recently popular implicit prompt learning strategies. Our mapping is used to construct a classifier for the new class, by adapting the neural weights of the classifiers for the known classes. Effectively we synthesize a new classifier. Our method is flexible: we show its efficacy for various knowledge representations and various neural networks (whereas prompt learning is limited to language-vision models). Our synthesized classifier can operate directly on test samples in a zero-shot fashion. We outperform CLIP especially for uncommon image classes, sometimes by margins up to 32%. Because the synthesized classifier consists of a tensor layer, it can be optimized further when a (few) labeled images become available. For few-shot learning, our synthesized classifier provides a kickstart. With one label per class, it outperforms strong baselines that require annotation of attributes or heavy pretraining (CLIP) by 8%, and increases accuracy by 39% relative to conventional classifier initialization. The code is available.
DownloadPaper Citation
in Harvard Style
J. Burghouts G., Schutte K., Kruithof M., Huizinga W., Ruis F. and Kuijf H. (2024). Synthesizing Classifiers from Prior Knowledge. In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: VISAPP; ISBN 978-989-758-679-8, SciTePress, pages 47-58. DOI: 10.5220/0012304300003660
in Bibtex Style
@conference{visapp24,
author={G. J. Burghouts and K. Schutte and M. Kruithof and W. Huizinga and F. Ruis and H. Kuijf},
title={Synthesizing Classifiers from Prior Knowledge},
booktitle={Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: VISAPP},
year={2024},
pages={47-58},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012304300003660},
isbn={978-989-758-679-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: VISAPP
TI - Synthesizing Classifiers from Prior Knowledge
SN - 978-989-758-679-8
AU - J. Burghouts G.
AU - Schutte K.
AU - Kruithof M.
AU - Huizinga W.
AU - Ruis F.
AU - Kuijf H.
PY - 2024
SP - 47
EP - 58
DO - 10.5220/0012304300003660
PB - SciTePress