MPC FOR SYSTEMS WITH VARIABLE TIME-DELAY - Robust Positive Invariant Set Approximations

Sorin Olaru, Hichem Benlaoukli, Silviu-Iulian Niculescu

2008

Abstract

This paper deals with the control design for systems subject to constraints and affected by variable time-delay. The starting point is the construction of a predictive control law which guarantees the existence of a nonempty robust positive invariant (RPI) set with respect to the closed loop dynamics. In a second stage, an iterative algorithm is proposed in order to obtain an approximation of the maximal robust positive invariant set. The problem can be treated in the framework of piecewise affine systems due to the explicit formulations of the control law obtained via multiparametric programming.

References

  1. Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38:3-20.
  2. Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, USA.
  3. Dua, V., Pistikopoulos, E. N., and Georgiadis, M. C. (2007). Multi-Parametric Model-Based Control: Theory and Applications. Wiley-VCH Verlag, Germany.
  4. Furtmueller, C. and del Re, L. (2006). Disturbance suppression for an industrial level control system with uncertain input delay and uncertain gain. In Proc. of the IEEE Conf. on Control Applications, pages 3206- 3211.
  5. Gilbert, E. and Tan, K. (1991). Linear systems with state and control constraints: The theory and application of maximal output admissible sets. IEEE Transactions on Automatic Control, 36:1008-1020.
  6. Goodwin, G., Seron, M., and Dona, J. D. (2004). Constrained Control and Estimation. Springer, Berlin.
  7. Kalman, R. E. (1964). When is a linear control system optimal? Trans. ASME, Journal of Basic Engineering, Series D, 86:81-90.
  8. Kothare, M., Balakrishnan, V., and Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32:1361-1379.
  9. Larin, V. (2003). About the inverse problem of optimal control. Journal of Applied and Computational Mathematics, 2:90-97.
  10. Maciejowski, J. (2002). Predictive Control with Constraints. Prentice Hall, England.
  11. Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36:789-814.
  12. Michiels, W. and Niculescu, S.-I. (2007). Stability and stabilization of time-delay systems. An eigenvalue based approach. SIAM, Philadelphia, USA.
  13. Niculescu, S.-I. (2001). Delay effects on stability. A robust control approach. Springer, Heidelberg.
  14. Olaru, S. and Dumur, D. (2005). Avoiding constraints redundancy in predictive control optimization routines. IEEE Transactions on Automatic Control, 50(9):1459-1466.
  15. Olaru, S. and Niculescu, S.-I. (2008). Predictive control for linear systems with delayed input subject to constraints. In Proceedings of the IFAC World Congress.
Download


Paper Citation


in Harvard Style

Olaru S., Benlaoukli H. and Niculescu S. (2008). MPC FOR SYSTEMS WITH VARIABLE TIME-DELAY - Robust Positive Invariant Set Approximations . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-32-6, pages 177-182. DOI: 10.5220/0001501001770182


in Bibtex Style

@conference{icinco08,
author={Sorin Olaru and Hichem Benlaoukli and Silviu-Iulian Niculescu},
title={MPC FOR SYSTEMS WITH VARIABLE TIME-DELAY - Robust Positive Invariant Set Approximations},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2008},
pages={177-182},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001501001770182},
isbn={978-989-8111-32-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - MPC FOR SYSTEMS WITH VARIABLE TIME-DELAY - Robust Positive Invariant Set Approximations
SN - 978-989-8111-32-6
AU - Olaru S.
AU - Benlaoukli H.
AU - Niculescu S.
PY - 2008
SP - 177
EP - 182
DO - 10.5220/0001501001770182