EEG-BASED SPEECH RECOGNITION - Impact of Temporal Effects

Anne Porbadnigk, Marek Wester, Jan Calliess, Tanja Schultz

2009

Abstract

In this paper, we investigate the use of electroencephalograhic signals for the purpose of recognizing unspoken speech. The term unspoken speech refers to the process in which a subject imagines speaking a given word without moving any articulatory muscle or producing any audible sound. Early work by Wester (Wester, 2006) presented results which were initially interpreted to be related to brain activity patterns due to the imagination of pronouncing words. However, subsequent investigations lead to the hypothesis that the good recognition performance might instead have resulted from temporal correlated artifacts in the brainwaves since the words were presented in blocks. In order to further investigate this hypothesis, we run a study with 21 subjects, recording 16 EEG channels using a 128 cap montage. The vocabulary consists of 5 words, each of which is repeated 20 times during a recording session in order to train our HMM-based classifier. The words are presented in blockwise, sequential, and random order. We show that the block mode yields an average recognition rate of 45.50%, but it drops to chance level for all other modes. Our experiments suggest that temporal correlated artifacts were recognized instead of words in block recordings and back the above-mentioned hypothesis.

References

  1. Becker, K. (2004). Gebrauchsanweisung fü r VarioPortTM.
  2. Birbaumer, N. (2000). The thought translation device (ttd) for completely paralyzed patients. IEEE Trans Rehabil Eng., 8(2):190-3.
  3. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kü bler, A., Perelmouter, J., Taub, E., and Flor, H. (1999). A spelling device for the paralysed. Nature, 398:2978.
  4. Blankertz, B., Dornhege, G., Krauledat, M., Mü ller, K.-R., Kunzmann, V., Losch, F., and Curio, G. (2006). The berlin brain-computer interface: Eeg-based communication without subject training. IEEE Trans. Neural Sys. Rehab. Eng., 14(2):147-152.
  5. Calliess, J.-P. (2006). Further investigations on unspoken speech. Institut fü r Theoretische Informatik Universität Karlsruhe (TH), Karlsruhe, Germany.
  6. Dornhege, G., del R. Millan, J., Hinterberger, T., McFarland, D., and Mü ller, K.-R., editors (2007). Towards Brain-Computer Interfacing. MIT Press.
  7. Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review of classification algorithms for eeg-based braincomputer interfaces. J. Neural Eng., 4:R1-R13.
  8. Maier-Hein, L. (2005). Speech recognition using surface electromyography. Master's thesis, Institut fü r Theoretische Informatik Universität Karlsruhe (TH), Karlsruhe, Germany.
  9. Neuper, C., Mü ller, G. R., Kü bler, A., Birbaumer, N., and Pfurtscheller, G. (2003). Clinical application of an eeg-based braincomputer interface: a case study in a patient with severe motor impairment. Clin. Neurophysiol., 114:399-409.
  10. Nijholt, A., Tan, D., Pfurtscheller, G., Brunner, C., Millan, J., Allison, B., Graimann, B., Popescu, F., Blankertz, B., and Mü ller, K.-R. (2008). Brain-computer interfacing for intelligent systems. IEEE Intell. Syst., 23:7279.
  11. Porbadnigk, A. (2008). Eeg-based speech recognition: Impact of experimental design on performance. Institut fü r Algorithmen und Kognitive Systeme, Universität Karlsruhe (TH), Karlsruhe, Germany.
  12. Scherer, R., Mü ller, G., Neuper, C., Graiman, B., and Pfurtscheller, G. (2004). An synchronously controlled eeg-based virtual keyboard: Improvement of the spelling rate. IEEE Trans. Neural Syst. Rehabil. Eng., 51(6):979984.
  13. Suppes, P., Lu, Z.-L., and Han, B. (1997). Brain wave recognition of words. Proc. Natl. Acad. Sci. USA, 94:14965-14969.
  14. Waibel, A., Bett, M., Metze, F., Ries, K., Schaaf, T., Schultz, T., Soltau, H., Yu, H., and Zechner, K. (2001). Advances in automatic meeting record creation and access. In Proc. ICASSP 7801, volume 1, pages 597-600.
  15. Wand, M. (2007). Wavelet-based preprocessing of eeg and emg signals for speech recognition. Institut fü r Theoretische Informatik Universität Karlsruhe (TH), Karlsruhe, Germany.
  16. Wester, M. (2006). Unspoken speech - speech recognition based on electroencephalography. Master's thesis, Institut fü r Theoretische Informatik Universität Karlsruhe (TH), Karlsruhe, Germany.
  17. Wolpaw, J. R., Birbaumer, N., McFarland, D., Pfurtscheller, G., and Vaughan, T. (2002). Brain-computer interfaces for communication and control. Clin. Neurophysiol., 113(6):767791.
  18. Wolpaw, J. R., McFarland, D. J., Vaughan, T. M., and Schalk, G. (2003). The wadsworth center braincomputer interface (bci) research and development program. IEEE Trans. Neural Syst. Rehabil. Eng., 11(2):207-207.
Download


Paper Citation


in Harvard Style

Porbadnigk A., Wester M., Calliess J. and Schultz T. (2009). EEG-BASED SPEECH RECOGNITION - Impact of Temporal Effects . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009) ISBN 978-989-8111-65-4, pages 376-381. DOI: 10.5220/0001554303760381


in Bibtex Style

@conference{biosignals09,
author={Anne Porbadnigk and Marek Wester and Jan Calliess and Tanja Schultz},
title={EEG-BASED SPEECH RECOGNITION - Impact of Temporal Effects},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)},
year={2009},
pages={376-381},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001554303760381},
isbn={978-989-8111-65-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)
TI - EEG-BASED SPEECH RECOGNITION - Impact of Temporal Effects
SN - 978-989-8111-65-4
AU - Porbadnigk A.
AU - Wester M.
AU - Calliess J.
AU - Schultz T.
PY - 2009
SP - 376
EP - 381
DO - 10.5220/0001554303760381