Towards Managing Data Variability in Multi Product Lines

Niloofar Khedri, Ramtin Khosravi

2015

Abstract

Multi product lines (MPLs) are systems consisting of collections of interdependent software product lines (SPLs). The dependencies and interactions among the SPLs cause new challenges in variability management. In the case of a large-scale information system MPL, important issues are raised regarding integration of the databases of the individual SPLs comprising the main system. The aim of this paper is to introduce a method to manage the variability in the data model of such systems. To this end, we first address the problem of developing a universal feature model of the MPL, obtained from integrating the feature models of the individual SPLs, incorporating the data interdependencies among the features. Further, we develop the data model of the MPL using a delta-oriented technique, based on the universal feature model. Our method addresses the problem of possible conflicts among the data model elements of different SPLs and proposes techniques to resolve the conflicts based on data model refinements.

References

  1. Acher, M., Collet, P., Lahire, P., and France, R. B. (2009). Composing feature models. In SLE 7809, pages 62-81.
  2. Acher, M., Collet, P., Lahire, P., and France, R. B. (2011). Managing feature models with familiar: a demonstration of the language and its tool support. In VaMoS 7811, pages 91-96.
  3. Bartholdt, J., Oberhauser, R., and Rytina, A. (2009). Addressing data model variability and data integration within software product lines. International Journal On Advances in Software, 2:84-100.
  4. Batini, C. and Lenzerini, M. (1984). A methodology for data schema integration in the entity relationship model. IEEE Trans. Software Eng., 10(6):650-664.
  5. Hartmann, H. and Trew, T. (2008). Using feature diagrams with context variability to model multiple product lines for software supply chains. In SPLC 7808, pages 12-21.
  6. Holl, G., Grnbacher, P., and Rabiser, R. (2012a). A systematic review and an expert survey on capabilities supporting multi product lines. Information and Software Technology, 54(8):828-852.
  7. Holl, G., Thaller, D., Grünbacher, P., and Elsner, C. (2012b). Managing emerging configuration dependencies in multi product lines. In VaMoS 7812, pages 3-10.
  8. Khedri, N. and Khsoravi, R. (2013). Handling database schema variability in software product lines. In APSEC 7813, pages 331-338.
  9. Palopoli, L., Saccà, D., and Ursino, D. (1998). Semiautomatic semantic discovery of properties from database schemas. In IDEAS 7898, pages 244-253.
  10. Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Software Product Line Engineering: Foundations, Principles and Techniques. Springer-Verlag.
  11. Pottinger, R. A. and Bernstein, P. A. (2003). Merging models based on given correspondences. VLDB 7803, pages 862-873.
  12. Rosenmüller, M. and Siegmund, N. (2010). Automating the configuration of multi software product lines. In VaMoS 7810, pages 123-130.
  13. Rosenmüller, M., Siegmund, N., Kästner, C., and ur Rahman, S. S. (2008). Modeling dependent software product lines. In McGPLE 7808, pages 13-18.
  14. Schaefer, I., Bettini, L., Bono, V., Damiani, F., and Tanzarella, N. (2010). Delta-oriented programming of software product lines. In SPLC 7810, pages 77-91.
  15. Schäler, M., Leich, T., Rosenmüller, M., and Saake, G. (2012). Building information system variants with tailored database schemas using features. In CAiSE 7812, pages 597-612.
  16. Segura, S., Benavides, D., Ruiz-Cortés, A., and Trinidad, P. (2008). Generative and transformational techniques in software engineering II. chapter Automated Merging of Feature Models Using Graph Transformations, pages 489-505. Springer-Verlag.
  17. Siegmund, N., Kstner, C., Rosenmller, M., Heidenreich, F., Apel, S., and Saake, G. (2009). Bridging the gap between variability in client application and database schema. In German Database Conference 7809, pages 297-306.
  18. Wulf-Hadash, O. and Reinhartz-Berger, I. (2013). Cross product line analysis. In VaMoS 7813, pages 21:1-21:8.
  19. Zaid, L. A. and Troyer, O. D. (2011). Towards modeling data variability in software product lines. In BMMDS/EMMSAD 7811, pages 453-467.
Download


Paper Citation


in Harvard Style

Khedri N. and Khosravi R. (2015). Towards Managing Data Variability in Multi Product Lines . In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, ISBN 978-989-758-083-3, pages 523-530. DOI: 10.5220/0005227005230530


in Bibtex Style

@conference{modelsward15,
author={Niloofar Khedri and Ramtin Khosravi},
title={Towards Managing Data Variability in Multi Product Lines},
booktitle={Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,},
year={2015},
pages={523-530},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005227005230530},
isbn={978-989-758-083-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
TI - Towards Managing Data Variability in Multi Product Lines
SN - 978-989-758-083-3
AU - Khedri N.
AU - Khosravi R.
PY - 2015
SP - 523
EP - 530
DO - 10.5220/0005227005230530