Parallel Version n-Dimensional Fast Fourier Transform Algorithm - Analog of the Cooley-Tukey Algorithm
M. V. Noskov, V. S. Tutatchikov
2015
Abstract
One-, two- and three-dimensional fast Fourier transform (FFT) algorithms has been widely used in digital processing. Multi-dimensional discrete Fourier transform is reduced to a combination of one-dimensional FFT for all coordinates due to the increased complexity and the large amount of computation by increasing the dimensional of the signal. This article provides a general Cooley-Tukey algorithm analog, which requires less complex operations of additional and multiplication than the standard method, and runs 1.5 times faster than analogue in Matlab.
References
- Dudgeon, D. E. and Mersereau, R. M., 1983. Multidimensional Digital Signal Processing, Prentice Hall.
- Blahut, R. E., 1985. Fast Algorithms for Digital Signal Processing, Addison-Wesley Press.
- Tutatchikov V. S., Kiselev O. I., Noskov M. V., 2013. “Calculating the n-Dimensional Fast Fourier Transform”, Pattern Recognition and Image Analysis, vol. 23, no. 3, pp. 429-433.
- Gonzalez, R. C., Woods, R. E., Eddins, S. L., 2009. Digital Image Processing Using MATLAB, Gatesmark Publishing. Knoxville.
- Starovoitov, A. V., 2010. “On multidimensional analog of Cooley-Tukey algorithm”, Reporter Siberian State Aerospace University named after academician M.F.Reshetnev, no. 1 (27), pp. 69-73.
Paper Citation
in Harvard Style
Noskov M. and Tutatchikov V. (2015). Parallel Version n-Dimensional Fast Fourier Transform Algorithm - Analog of the Cooley-Tukey Algorithm . In Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015) ISBN 978-989-758-094-9, pages 114-117. DOI: 10.5220/0005461401140117
in Bibtex Style
@conference{imta-515,
author={M. V. Noskov and V. S. Tutatchikov},
title={Parallel Version n-Dimensional Fast Fourier Transform Algorithm - Analog of the Cooley-Tukey Algorithm},
booktitle={Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)},
year={2015},
pages={114-117},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005461401140117},
isbn={978-989-758-094-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)
TI - Parallel Version n-Dimensional Fast Fourier Transform Algorithm - Analog of the Cooley-Tukey Algorithm
SN - 978-989-758-094-9
AU - Noskov M.
AU - Tutatchikov V.
PY - 2015
SP - 114
EP - 117
DO - 10.5220/0005461401140117